
Web Performance Optimization: Analytics

Wim Leers

Thesis proposed to achieve the degree of master
in computer science/databases

Promotor : Prof. dr. Jan Van den Bussche

Hasselt University
Academic years 2009—2010 & 2010—2011

Abstract

The goal of this master thesis is to make a useful contribution to the upcom-
ing Web Performance Optimization field, or WPO for short. The importance
of WPO is only growing, and as it grows, the need for tools that can assist
developers in making the right decisions also grows. Hence that is the goal
of this thesis: to build a tool that can be used for the continuous profiling of
a web site’s performance.

The developer begins by integrating Episodes (a tool for measuring how long
the various episodes of the page loading process take) with the web site, which
will log the measured results to an Episodes log file. This log file by itself is a
good set of data that can be interpreted, but it would be too time-intensive
to manually analyze it. Hence we want to automate this analysis, and this
is why the thesis is titled “Web Performance Optimization: Analytics”.

We call this analysis Episodes log mining, which is a specialization of web
usage mining. However, web usage mining is only designed to work with
static data sets (that are updated in batches), while an Episodes log file
is updated continuously: it should be considered a data stream. Hence data
stream mining has also been studied: both frequent item mining and frequent
itemset mining algorithms have been looked into. However, frequent pattern
mining algorithms can only find problems that persist over relatively long
periods over time. We also want to detect brief problems, that are typically
caused by traffic spikes; i.e. infrequent issues. To achieve this, anomaly
detection has been investigated as well.

Finally, automatically detecting problems and presenting them to the user is
great, but the user may also want to inspect all measurements himself. That
can be achieved with OLAP techniques and more specifically the data cube,
which is a data structure designed to be able to quickly answer queries about
multidimensional data.

Preface

This thesis has grown from a custom proposal that I wrote, which continues
where I left off with my bachelor thesis. My personal goal is to create a
useful contribution to the upcoming field of Web Performance Optimization,
to hopefully help the field move forward, towards a faster and more pleasant
Internet experience.

I thank Steve Souders—evangelist and coiner of the term Web Performance
Optimization, or WPO for short—for giving feedback on my initial sugges-
tions on doing a meaningful master thesis in the WPO field. There likely is
nobody in a better position to judge this than him.
It is my hope that choosing an idea that has his approval, maximizes the
chance of it being a useful contribution to the field and it making a differ-
ence in real-world situations.

My deepest gratitude goes to my promotor, Prof. dr. Jan Van den Bussche,
for making time in his already overfull schedule for guiding me through the
various steps of this master thesis. Our rare—yet intense—meetings have
often triggered my disbelief and raised eyebrows at his memorable thorough-
ness and insight. They brought interesting facts & trivia, and made my view
on computer science broader. The end of office hours did not imply that
it was time to stop a meeting. Even late at night in the weekend, I would
get an e-mail explaining his interpretation on an algorithm. If I had to give
one word to describe him, it would be dedication. I’m very grateful for his
indispensable help.

Special thanks also go to Prof. dr. Benjamin Schrauwen, whom pointed me
in the right direction when I was looking into anomaly detection literature.
He saved me a lot of time.

Finally, I would like to thank my parents Etienne & Noëlla and my brother
Tim, whose support has been invaluable. For the second part of my master
thesis (the implementation phase), I have been fortunate enough to also enjoy
the support of my awesome girlfriend Anneleen, her parents Geert & Daniëlla
and her brother Gertjan. Thanks!

Contents

1 Introduction 1

1.1 Continuous Profiling . 4

1.2 Context . 5

1.3 Conclusion . 7

I Literature Study 9

2 Justification of Literature Study Subjects 11

2.1 Detecting Web Performance Issues 13

2.1.1 Efficient & Accurate Numerical Data Mining 13

2.1.2 A Goal-Optimized Form of Categorical Data Mining . 15

2.2 Detecting Advanced Web Performance Issues 16

2.2.1 Preloading of Components Based on Typical Naviga-
tion Paths . 16

3 Data Stream Mining 19

3.1 Methodologies for Stream Data Processing 20

3.1.1 Random Sampling . 20

3.1.2 Sliding Windows . 21

3.1.3 Histograms . 21

3.1.4 Multiresolution Methods 21

3.1.5 Sketches . 22

3.1.6 Randomized Algorithms 24

3.2 Frequent Item Mining . 26

3.2.1 Window Models . 27

3.2.2 Algorithm Classification 29

3.2.3 Basic Sampling . 30

3.2.4 Concise Sampling . 30

3.2.5 Counting Sampling . 31

i

3.2.6 Sticky Sampling . 31

3.2.7 Lossy Counting . 33

3.2.8 Count Sketch . 35

3.2.9 Probabilistic Lossy Counting 37

3.3 Frequent Pattern (Itemset) Mining 42

3.3.1 Lossy Counting for Frequent Itemsets 42

3.3.2 FP-Stream . 43

4 Anomaly Detection 49

4.1 What are Anomalies? . 49

4.2 Challenges . 50

4.3 Types of Anomalies . 51

4.3.1 Point Anomalies . 51

4.3.2 Contextual Anomalies 51

4.3.3 Collective Anomalies 52

4.4 Anomaly Detection Modes . 53

4.5 Anomaly Detection Output 54

4.6 Contextual Anomaly In Detail 54

4.7 Contextual Anomaly Algorithms 56

4.7.1 Vilalta/Ma . 56

4.7.2 Timeweaver . 60

5 OLAP: Data Cube 63

5.1 Multidimensional Data Representation 63

5.1.1 Fact Table . 63

5.1.2 Multidimensional Array 65

5.2 Slicing and Dicing . 69

5.3 Data Cube . 71

5.3.1 Definition . 71

5.4 Generalized constructs . 72

ii

5.4.1 Histogram . 73

5.4.2 Cross tabulation . 73

5.4.3 Roll-up . 75

5.4.4 Drill-down . 75

5.4.5 Generalization explained 75

5.5 The Data Cube Operator . 77

5.6 Elaborate data cube example 80

5.7 Performance . 85

5.7.1 Efficient Cubing . 85

5.7.2 Precomputing for Speed: Storage Explosion 86

5.7.3 The Impact of the Data Structure 87

5.7.4 Conclusion . 87

5.8 Performance for range-sum queries and updates 88

5.8.1 Prefix Sum . 89

5.8.2 Relative Prefix Sum 89

5.8.3 The Dynamic Data Cube 95

5.9 Stream Cube: Data Cube for Data Streams 99

5.9.1 Design Requirements 99

5.9.2 Architecture . 100

5.9.3 Performance . 104

5.9.4 FP-Stream + Stream Cube 104

6 Conclusion 107

II Implementation 109

7 Overview of work performed 111

8 The Process 113

iii

9 Episodes Log Mining 115

9.1 Introduction . 115

9.1.1 Web Usage Mining . 115

9.1.2 Web Usage Mining Versus Episodes Log Mining 116

9.1.3 The Mining Process . 118

9.2 The Attributes . 119

9.2.1 All Fields Explained 120

9.2.2 Preprocessing Fields into Numerical and (Hierarchical)
Categorical Attributes 122

9.2.3 Mining with Concept Hierarchies 124

10 Implementation 129

10.1 General . 129

10.2 EpisodesParser . 129

10.2.1 Information Representation 129

10.2.2 Program Flow . 132

10.2.3 Notes Regarding the Conversion to Transactions 132

10.2.4 Obstacles . 135

10.2.5 End Result . 137

10.2.6 Performance . 139

10.3 Analytics — Phase 1 . 140

10.3.1 Information Representation 140

10.3.2 Program Flow . 142

10.3.3 Optimizations . 144

10.3.4 Obstacles . 148

10.3.5 End Result . 150

10.3.6 Performance . 151

10.4 Analytics — Phase 2 . 152

10.4.1 Information Representation 152

10.4.2 Program Flow . 153

iv

10.4.3 Optimizations . 156

10.4.4 Obstacles . 157

10.4.5 End Result . 166

10.4.6 Performance . 167

10.5 UI . 169

10.6 Conclusion . 172

10.6.1 Unit Tests . 172

10.6.2 Applicability . 172

10.6.3 Overall . 173

10.6.4 Vision . 173

11 WPO Gaining Attention 175

12 Glossary 177

v

1 Introduction

My bachelor thesis [1] was about making Drupal [2] web sites load faster
(Drupal is a hybrid of a Content Management System and a framework, to
build websites with). 80 to 90% of the response time (as observed by the end
user) is spent on downloading the components of a web page [4]. Therefore
this is also the part where optimizations have the largest effect—optimizing
the code that renders the pages (i.e. the code that generates (X)HTML) has
far less effect.

To be able to prove the positive impact of optimizing the loading of the
components of a web site—thereby proving that the work I was going to
do had a positive impact—I researched existing page loading profiling tools.
Episodes [5, 6] (which refers to the various episodes in the page loading
sequence) came out as a clear winner:

• Episodes aims to become an industry standard;

• Episodes is open source;

• Episodes is a piece of JavaScript that runs in the browser on each loaded
page, thus for each real visitor, thus it represents the real-world per-
formance (all existing solutions [7, 8, 9, 10] require simulations, which
implies they’re also only suitable for simulating traffic on a new ver-
sion of a web site before it goes live—they required simulations when
I wrote my bachelor thesis in 2009, and still do at the time of writing
this, in May 2010);

• Episodes does not require any hardware other than a server to log to.

Also as part of my bachelor thesis, I wrote a simple Drupal module—the
Episodes module [11]—that could create simple charts to compare the aver-
age page loading time per day per geographic region. For my test case, with
two weeks of collecting data, this was the resulting dataset:

About two weeks, or 100 MB worth of statistics, had been
logged. These were then imported on June 25, resulting in a
database table of 642.4 MB. More than 2.7 million episodes were
collected over more than 260,000 page views.

While my test case was a fairly big web site (500,000-1,000,000 page views per
month), that is nothing when compared with the top-100 web sites. Even for

1

Figure 1: Episodes analysis charts about episodes generated by the Drupal
Episodes module.

these mere 2.7 million recorded episodes, it took several minutes to generate
simple charts (see figures 1 and 2). And that doesn’t include the time for
importing the log file into the database.

That is of course for a large part due to the fact that the database schema
used was extremely inefficient: it was in fact a verbatim copy of the log file.
The database schema should be optimized for the queries that are necessary
to generate the charts. In that implementation, multiple full table scans
were required, which is something that should be absolutely avoided when
building an application on top of an RDBMS, because it guarantees poor
performance.

Despite its obvious (intended) lack of optimizations, it was sufficient to prove
that File Conveyor [3]—the daemon that I wrote to automatically sync files
to any CDN, regardless of the file transfer protocol used—when integrated
with a Drupal web site and thus providing CDN integration for that web site,
had a positive impact: the test web site consistently loaded about twice as
fast, especially for visitors with slower internet connections, such as visitors
from Brazil. Without this proof-of-concept implementation, I would never
have been able to prove the positive impact on performance.

2

Figure 2: Episodes analysis charts about page loading performance generated
by the Drupal Episodes module.

3

1.1 Continuous Profiling

The main problem is that sites are too slow. In my bachelor thesis, I imple-
mented a daemon to synchronize files to a CDN, which is one of the most
important ways to speed up the loading of a web site.

However, simply implementing all known tricks is not enough, because using
a CDN might speed up your web site for half your visitors and slow it down
for the other half—although that is an extremely unlikely scenario. That
is why you need to be able to do Continuous Profiling (cfr. Continuous
Integration).

Continuous Profiling means that you are continuously monitoring your real-
world web performance: you must track the page loading characteristics of
each loaded page! That by itself is easy: all it requires is to integrate Episodes
with your web site. The actual problem lies in analyzing the collected data.
To be able to draw meaningful conclusions from the collected data, we need
to apply data mining techniques as well as visualizing the conclusions that are
found. E.g. pages may be loading more slowly from South-Africa because
the CDN’s server there (a PoP) is offline, or your shopping cart checkout
page may be loading slowly in Firefox because of a JavaScript issue, or a
particular page may be loading slowly in all web browsers because of bad
CSS on that page, or maybe your site is loading very slowly for all users of
a certain ISP because their DNS server has poor performance. All of these
problems (and more) could be pinpointed (albeit partially) automatically.

Hence, that is what the goal is of this thesis: to build something like Google
Analytics, but for web performance (page loading performance) instead of just
page loads. An analytics suite for tracking web performance. An application
that can automatically extract conclusions out of Episodes logs and visualize
them. This application should be very scalable (as the number of recorded
episodes is typically an order of magnitude higher than the number of page
views) and possibly also distributed. You should also be able to go back to
any point in the past and view the web performance at that time. Thus,
efficient storage is also a requirement. Finally, it should be an open source
application that can be developed further by others after I finish my master
thesis.

I told Steve Souders about my idea for my master thesis—he is the most
prominent speaker, researcher and evangelizer in the web performance opti-
mization scene and on Google’s payroll to push this forward—and asked him
for feedback. His response:

I did a mini performance conference in LA last month and

4

heard three big companies (Shopzilla, Edmunds, and Google Pi-
casaWeb) get up and say they had regressed in their web site
performance because they weren’t tracking latency. I realized
that most companies aren’t even at the point where they have
good metrics. I think the first idea—Google Analytics for la-
tency—is the best idea. [. . .] It would be great if this lived on
Google AppEngine. Users could take the code and spin up their
own instance—for free! You could also host a shared instance. I
will say that the work [. . .] on AppEngine has been hard because
of the datastore—my officemate does the programming and it is
taken him months to do what I did in a few days on the LAMP
stack.

He agrees on the necessity for such an application and immediately proposes
to make it run on Google AppEngine [24], which is a free platform for web
applications with its own, apparently complicated, datastore that is schema-
less. The idea is that anybody can create a free AppEngine account, install
this application and get a Continuous Profiling application for free!

Whether it would run or Google AppEngine or not, it is certain that an
open source Continuous page loading performance profiling would be very
valuable, which is exactly what I’ll try to build for my master thesis.

1.2 Context

Ever since Steve Souders’ High Performance Web Sites book [4], interest
in making web sites load faster has been increasing. More and more big
companies with a strong web presence are paying attention to page loading
performance: the well-known ones such as Microsoft, Yahoo, Google, but also
big companies that are not technology companies such as Amazon, White
Pages, Shopzilla, Edmunds, Netflix . . .

Page Loading Profiling Tools

As a result of this trend, a large number of advanced page loading profiling
tools are being developed:

• Deep tracing of the internals of Internet Explorer, by using dynaTrace
Ajax [12]

5

• JavaScript memory heap profiler and sample-based CPU profiler in
WebKit/Google Chrome [13]

• Firefox has been leading the way with the development of the Firebug
extension and the Yahoo! YSlow [14] & Google Page Speed [15] Firebug
plug-ins

Proposals

Recent proposals (in the last three months of 2009 alone) for web performance
optimization include:

• SPDY [16], a new application-level protocol that learns from the mis-
takes of HTTP (which is ten years old). This protocol specification is
currently in draft state, but tests of the researchers (at Google) show
that pages of the top 25 web sites loaded up to 55% faster.

• Resource Packages [17, 18]. A resource package is a zip file that bundles
multiple resources into a single file and therefor requires only a single
HTTP response and avoids multiple round trip delays. Browsers typ-
ically only take advantage of about 30% of their bandwidth capacity
because of the overhead of HTTP and TCP and the various blocking
behaviors in browsers. This proposal would result in less bandwidth be-
ing consumed by overhead. Plus, it is backwards compatible: browsers
that don’t support it load the page the same way as today.

• Web Timing [19]. This is a proposal presented to the W3C and wel-
comes feedback from browser vendors. It effectively means that Episodes
is being moved into the actual browser partially, to get rid of the latency
of loading Episodes’ JavaScript and the relatively inaccurate time mea-
surements of JavaScript. It would also allow us to get a complete pic-
ture of the end-to-end latency, which is impossible to do with Episodes
(which can only rely on what JavaScript can do). This proposal is only
a working draft and requires interacting with browser vendors to ensure
all current major browsers will implement this. Even in the best case
scenario, it will take years until the majority of the installed browsers
will support this. Until then, we will be limited in what we can mea-
sure. Hence this proposal should move forward as fast as possible.

All of these would strongly affect browser implementations, which indicates
the willingness and likeliness to change the way data is transferred over the
internet to make web sites load faster.

6

Search Engine Ranking

The importance of web performance is lifted to an even higher level by the
fact that Google is now using the page loading performance (they call it
“page speed” or “site speed”) of a web page to calculate its ranking.

They announced that they would likely let page speed influence the ranking
of web pages in December 2009 [20] and activated it in April 2010. This
effectively means that all companies whom have been paying for SEO (search
engine optimization) will also have to consider web performance optimization.

1.3 Conclusion

Given the aforementioned context, it is clear that the importance of web
performance optimization is only growing. And as it grows, the need for
tools that can assist developers in making the right decisions of course also
grows. Because new performance issues may occur at any point of time, there
is a need for continuous profiling.

That’s why it is my goal to build a tool that can be used for continuous
profiling that, if well-written, can become a very useful tool in the day-to-
day life of the web developer, to help keep the web developer’s live web sites
loading fast. It could make a real difference, and that is what I’m aiming for.

7

Part I

Literature Study

In this first part of this master thesis, an extensive literature study has
been conducted, in an attempt to cover all bases to ensure the successful
implementation of the envisioned application in the second part.

The outlook covered what was planned: a little bit more literature study,
but for the most part: the actual implementation. The planning was real-
istic in terms of the proportions, but not in terms of duration. Completion
was planned for December 2010, but due to a late start, interviews for an
internship at Facebook (thanks to this master thesis!) and a larger amount
of work than anticipated, completion would not occur until June 2011.

Academic year 2009—2010

2 Justification of Literature Study Subjects

As any other master thesis, this master thesis also includes a literature study.
But since the end goal is very practical, the subjects of the literature study
require a brief justification and introduction.

Episodes Log Mining

For Episodes log mining, (see the next section), I have used web usage mining
as a basis. However, it was clear that this would be too “applied” to qualify
as a true member of this literature study.

This led to concluding that numerical data mining was not going to be part
of this thesis, and that normal categorical association rule mining would not
suffice; hierarchically categorical association rule mining was necessary, for
which concept hierarchies would need to be used (this is also called generalized
association rule mining).

Data Stream Mining

The main task of this thesis consists of mining patterns in the Episodes log
file. However, this Episodes log file is continuously being updated: new log
entries are appended as pages are being viewed on the web site. So we are in
fact not dealing with a static data set that occasionally receives a batch of
new log entries: we are dealing with a data stream! Therefore, data stream
mining is precisely what is needed; more specifically: frequent pattern stream
mining, because from there it is a simple step to association rules, which are
exactly what we need. (Association rules are deduced automatically from a
data set and define the associations that apparently occur in the data set.
E.g. people buying bread in the super market also buy wine. Or, applied
to this context: pages that include a specific JavaScript file, are slow in a
specific browser.)

This is discussed in section 3.

Anomaly Detection

Data stream mining can only find frequently occurring patterns, because that
is exactly what frequent pattern mining is about. However, we also want to
be able to detect occasional spikes instead of just the persistent problems.

11

For example, spikes may occur only on the first day of the month (because
people can enter the monthly contest on that day), which the web server
may not be able to cope with properly. Detecting these infrequent problems
is exactly what anomaly detection is for.

Anomaly detection is discussed in section 4.

OLAP

OLAP, and more specifically the data cube, is necessary to be able to quickly
answer queries about multidimensional data. The data that needs to be
presented to the user (and browsed, queried, interacted with) in the context
of web performance optimization is very multidimensional, as is explained in
section 9.2.

OLAP, and the data cube operator in particular, is discussed in section 5.

12

2.1 Detecting Web Performance Issues

The goal of this thesis is to automate the detection of web performance issues.
This can be achieved through Episodes log mining, as discussed above.

2.1.1 Efficient & Accurate Numerical Data Mining

Discretization: Information Loss

A traditional data mining approach would be to use the classical association
rule framework [32]. However, this is not adequate to deal with numerical
data directly. Typically, the approach to association rule mining for numer-
ical attributes are based on discretization (see e.g. [33]).

However, discretization has several serious disadvantages:

1. it always implies information loss

(a) values in the same bucket become indistinguishable from one an-
other,

(b) small differences become unnoticeable

(c) values close to a discretization border may result in very large
(unjustifiable) changes in the set of active rules

2. if there are too many discretization intervals:

(a) discovered rules are duplicated for multiple intervals

(b) this makes overall trends hard to spot

(c) it is possible that rules will not be accepted because they don’t
meet the minimum support count (which is exactly because they’re
spread over too many discretization intervals)

Clearly, it is desirable to not apply discretization to the collected Episodes
durations, to avoid information loss and the consequential problems.

13

Rank-Correlated Sets of Numerical Attributes

In [35], an alternative mining method is proposed, which discerns itself by
not requiring discretization and thus not incurring information loss. They
propose a new technique based on well-established statistical studies [36, 37]
of rank correlation measures.

They propose to compare attributes by the rank of their values, through
three new support measures for sets of numerical attributes:

1. suppτ , based on Kendall’s τ

2. suppρ, based on Spearman’s ρ

3. suppF , based on Spearman’s Footrule F [36, 37]

By using these new support measures and techniques they have developed
to combine the mining of sets of numerical attributes with ordinal and cate-
gorical attributes, it is possible to form association rules.

In their case, they have applied it to meteorological data, which allowed them
to discover association rules such as (with t1 and t2 being records):

If the altitude of the sun in t1 is higher than in t2, then the tem-
perature is likely to be higher as well.

If t1 comes from a weather station in Antwerp, and t2 from Brus-
sels, and wind speed in t1 is higher than in t2, then it is likely
that cloudiness is higher as well.

Applicability

At first, it appeared that this technique could prove useful to find more
accurate association rules for the numerical attributes in Episodes log mining.
However, as explained in section 9.2.2, the only numerical attributes are those
for the episodes. And unfortunately, it is quite useless to apply numerical
data mining to just the episode durations: clearly, when one episode takes
longer, its container episodes will also take longer, and often it will be the
case that if one episode is slow, then the next (independent) episode will also
be slow (this can be due to a variety of factors: internet connection speed,
browser, hardware, CPU load, etc.).

It is clear that these association rules would be absolutely useless. Therefore
it was decided to stop looking into numerical data mining.

14

2.1.2 A Goal-Optimized Form of Categorical Data Mining

It has been explained why numerical data mining has been ruled out. All
other attributes (see section 9.2.2) are hierarchically categorical. Thus, this
leaves data mining on hierarchical categories, which already has been ex-
plained conceptually in section 9.2.3.

What we want, is to associate one or more of the hierarchical categories with
the speed (“slow”, but also “acceptable”, “fast” or any other possible user-
defined speed) of each episode.

To achieve this, it is necessary to first classify each episode’s duration as its
corresponding speed. This effectively is a form of discretization.

After this has happened, all we are left with are categorical attributes, some
of which are hierarchical. We can then apply well-known association rule
mining algorithms such as Apriori or FP-growth [25], but then adapted to
work with concept hierarchies (again, see section 9.2.3, but also [25, 34]).

Through this process, we estimate to achieve usable web performance issues
detection. More refinement is only possible after an implementation has been
completed, i.e. after we can actually look at the results of this suggested
process.

15

2.2 Detecting Advanced Web Performance Issues

2.2.1 Preloading of Components Based on Typical Navigation
Paths

Step 1: User Identification

User identification is necessary: one can only discover which paths are typical
if one can identify the navigation history of a single user.

This does not require knowledge about a user’s identity, it is only necessary
to be able to distinguish among different users. The term user activity record
is used to refer to the sequence of logged page views belonging to the same
user. Only given the Episodes log file, it is impossible to rely on cookies
for user identification. The next logical identifier is the IP address in each
Episodes log entry, but this is generally not sufficient to identify a unique
visitor: ISPs may use proxy servers and then the IP address of the proxy
server shows up in the log entries. However, when combining the IP address
with the user agent, it is possible to fairly accurately detect unique users [27].

Step 2: Sessionization

Suppose a page A was the last viewed page on day 1 and page B was the
first viewed page on day 2, by the same user. However, they should not form
a navigation path, since they occurred in different sessions. This can only
be detected when both page views actually are considered to be part of two
different sessions: hence sessionization is a necessity as well.

Sessionization is the process of segmenting the user activity record of each
user into sessions, where each session represents a single visit to the web site.
We cannot rely on session identifiers because e.g. anonymous users may not
have such a session identifier at all, and because it is not desirable to impose
requirements on the web site for this functionality to work.

Denote the “conceptual” set of real sessions by R (representing the real ac-
tivity of the user on the web site). A sessionization heuristic h attempts to
map the page views in the log file into a set of constructed sessions Ch. For
the ideal heuristic, Ch∗ = R, i.e. the ideal heuristic can reconstruct the exact
sequence of the user’s navigation during a session. This is likely impossible
to achieve in all cases.

In general, there are two types of sessionization heuristics [27]:

16

• Time-oriented heuristics apply global or local time-out estimates to
mark session boundaries.

• Structure-oriented heuristics derive sessions from comparing the data
of the current path with that in the HTTP referrer field. But as noted
before, actual referrer information is not logged in Episodes logs, thus
this type of heuristic cannot be used.

Step 3: Path Completion

Pages in the navigation path may be cached in the end user’s browser (or in
an intermediate proxy server) and therefore their browser may not make any
request at all to the web server, and thus some page views may not show up
in the web server log [27].

This is true for typical web usage mining, but not for Episodes log mining,
since Episodes also runs on cached pages and thus logs the recorded episodes
and thus all page loads show up in the Episode log file. Hence path com-
pletion is a non-issue. The typical solution, path inference through referrers
would also not work since the HTTP referrer field has different semantics in
the context of Episodes logs; the actual HTTP referrer data is lost.

Calculating the Typical Navigation Paths

This is hardly rocket statistics: from all navigation paths, the top x percent
(when sorted by decreasing frequency) can be labeled as the typical naviga-
tion paths.

More advanced techniques, such as cluster analysis, probabilistic latent se-
mantic analysis, association rule mining, collaborative filtering and so on
could also be applied, but seem overkill given that the above simple measure
is likely to be sufficiently effective and far less computationally intensive than
these advanced techniques. Consult [27], pages 466—482 for details about
these (and other) more advanced techniques.

Note that here, like for the definition of “slow” in section 9.1.2, the top x
percent may gradually change as the log file is updated with new log entries.
This too, is by data stream mining (see section 3).

17

Using the Found Typical Navigation Paths for Component Preload-
ing

When typical navigation paths have been found, they can be exported in a
simple format, e.g. “startPath nextPath” separated by newlines (\n) (this
is a valid format since spaces and newlines are not allowed in URLs). This file
can then be used by the web site to automatically preload components that
will likely be needed, and thus improve the overall perceived page loading
performance. Of course, this could also be done manually, but then it is easy
to become outdated.

There are several methods a web site can use to decide which components
should be preloaded (i.e. which components are new in comparison with the
previous page in the path: the component delta):

1. Crawl the pages in typical navigation paths, parse the HTML and
calculate the component delta.
Then preload these components based on [38, 39].

2. The system with which the web site is built has an API to list all (or
most, making this a sub-optimal, but easy-to-implement improvement)
components on each page, which would then allow for easy calculation
of component deltas.
Then, again, preload these components based on [38, 39].

3. There is an easy-to-implement alternative, but with possible negative
side effects. Simply do the following in JavaScript: download the
(X)HTML of the next page in the typical navigation path, insert it
in the current DOM tree (but hide it) and all components on that
page will get loaded. Or: use a hidden iframe element. Or: use
jQuery(window).load(preloadURL) (only works for the same domain,
even loading a page from a subdomain doesn’t work, due to the Same
Origin Policy [40] of browsers).
While very simple to implement, the downside is that the entire (X)HTML
will be downloaded and parsed, and the JavaScript code will also exe-
cute (again see [38, 39] for technical details). This also means that this
will be counted as a true pageview. Episodes will not run again though
(it is triggered on specific page load events that are not triggered again
because in fact the “main page” has already been loaded).

18

3 Data Stream Mining

The main task of this thesis consists of mining patterns in the
Episodes log file. However, this Episodes log file is continuously
being updated: new log entries are appended as pages are being
viewed on the web site. So we are in fact not dealing with a static
data set that occasionally receives a batch of new log entries: we
are dealing with a data stream! Therefore, data stream mining
is precisely what is needed; more specifically: frequent pattern
stream mining, because from there it is a simple step to associa-
tion rules, which are exactly what we need. (Association rules are
deduced automatically from a data set and define the associations
that apparently occur in the data set. E.g. people buying bread
in the super market also buy wine. Or, applied to this context:
pages that include a specific JavaScript file, are slow in a specific
browser.)

This section is based mostly on [41, 46], at least for the introduction and
general information about the various methodologies. The details about the
various algorithms originates from their corresponding original (or related)
papers.

In section 9, Episodes log mining has been explained in detail. However,
it only deals with mining entire Episodes log files. In practice, it will be
necessary to process all incoming data immediately, so that the live status
of the system can be calculated—and displayed to the end-user.

To achieve this, we must dive deeper into the field of data stream mining.
The goals are the same as for data mining, but the difference is that we do
not operate on a fixed set of data, but on a stream of incoming data, that
is generated continuously, and with varying update rates. Data streams are
temporally ordered, fast changing, massive, and potentially infinite. Because
not all data is known before starting the mining process, and because the
size of the (stream of) data is potentially infinite, this implies that we can
no longer use algorithms that require multiple scans: instead, it is necessary
to use single-scan algorithms (it may even be impossible to store the entire
data stream).
Even for non-stream data this may be necessary: if the dataset is so enor-
mous that it is not feasible to perform multiple scans (e.g. when one needs
to perform Episodes log mining on months worth of Episodes logs), then
algorithms developed for data streams are equally applicable.

19

3.1 Methodologies for Stream Data Processing

As discussed before, it is impractical (or even unrealistic) to scan through an
entire data stream multiple times—sometimes it even might be impossible
to evaluate every element of the stream due to the update rate. The size of
the data is not the only problem: the universes1 that need to be tracked can
be very large as well (e.g. the universe of all IP addresses is enormous).

Clearly, new data structures, techniques and algorithms are needed for effec-
tive processing of stream data. Because it is impossible to store all stream
data (which would require an infinite amount of storage space), it is often
necessary to consider a trade-off: accuracy versus storage. In other words:
approximate instead of exact answers are often sufficiently accurate.

Synopses can be used to calculate approximate answers, by providing sum-
maries of data: they use synopsis data structures, which are data structures
that are significantly smaller than their base data set (here: stream data).
We want our algorithms to be efficient both in space and time. Instead of
storing all elements seen so far (requires O(N) space), it is more desirable to
only use polylogarithmic space (O(logkN)).

The synopses below are explained succinctly, either because they’re fairly
easy to comprehend or because explaining them in-depth would lead us too
far.

3.1.1 Random Sampling

Rather than storing (and processing) the entire data stream, another option
is to sample the stream at periodic intervals. However, to obtain an unbiased
sampling of the data, it is necessary to know the length of the stream in
advance, to determine the periodic interval. But for many data streams it is
impossible to know the length, or indeed it will be infinite. Hence another
approach is necessary.

An alternative method is reservoir sampling : it achieves an unbiased sample
by selecting s elements randomly and without replacement. In reservoir sam-
pling, a sample of size at least s is maintained, which is called the reservoir.
From this reservoir, a random sample of size s can be generated. To avoid
the cost of generating a sample from the possibly large reservoir, a set of
s candidates in the reservoir is maintained. These candidates form a true
random sample of the elements seen so far in the stream.

1A universe is the domain of possible values for an attribute.

20

As new data flows in from the data stream, every new element in the stream
can replace a random old element in the reservoir with the probability s

N
.

3.1.2 Sliding Windows

Instead of working with all data ever flown in through the data stream, we
make decisions based only on recent data. More formally: the element that
arrives at time t expires at time t+ w, with w the window size.

3.1.3 Histograms

A histogram is a synopsis data structure, which can be used to approximate
the frequency distribution of element values in a a stream. It partitions the
data into a set of contiguous buckets. Various partition rules are possible,
among which equal-width (equal value range for all buckets) and V-Optimal
(minimizes the frequency variance within each bucket, which better captures
the distribution of the data).

However, histograms require at least two passes: at least one to decide the
size of the buckets and then another to associate each value with a bucket.
This makes histograms unsuitable for use with data streams.

3.1.4 Multiresolution Methods

A multiresolution method is an example of a data reduction method—a data
reduction method can be used to achieve smaller data storage requirements,
yet closely maintain the integrity of the original data.
Multiresolution methods also offer, on top of the aforementioned, the abil-
ity to look at the data stream in multiple levels of detail, which may be a
desirable property when processing a data stream.

We look at one example of a multiresolution data reduction method: wavelets.

Wavelets

Wavelets are a technique from the field of signal processing, but can also be
used to build a multiresolution hierarchy over a signal, which would be the
data stream in our case. Wavelets coefficients are projections of the given
signal (again, the data stream in our case) onto an orthogonal set of basis

21

vectors. Which wavelets can be used depends on the choice of basis vec-
tors. Using the Haar wavelet (often chosen for their ease of computation) for
example, we can recursively perform averaging and differencing at multiple
levels of resolution.

An example of the one-dimensional Haar wavelet should clarify this. Let
A be a one-dimensional data vector, with A = [22, 14, 16, 12]. We now first
average each pair of values to get a new data vector with a “lower resolution”:
A′ = [22+14

2
, 16+12

2
] = [18, 14]. Clearly we cannot generate A from A′: not

enough information is available. To be able to restore the original values,
we need to store the detail coefficients, which capture the information that
has been lost. For Haar wavelets, these are simply the differences of the
second original value with the averaged value, in our example that would be:
18 − 14 = 4 and 14 − 12 = 2. Note that it now is possible to restore the
original four values. If we now apply this process of averaging and differencing
recursively, we get the following full decomposition:

Resolution Averages Detail coefficients

2 [22, 14, 16, 12] n/a
1 [18, 14] [4, 2]
0 [16] [2]

The wavelet transform of A (or wavelet decomposition) is defined to be the
single coefficient representing the overall average of the values in A, followed
by the detail coefficients in the order of increasing resolution. Thus, the Haar
wavelet transform of A is WA = [16, 2, 4, 2]. Each entry in WA is called a
wavelet coefficient.

We can then achieve a more compact data representation by either only in-
cluding the lower resolution detail coefficients or by applying compression
techniques such as run-length encoding (run-length encoding [51] can be
applied because the information is statistically concentrated in just a few
coefficients).

Wavelets have been used as approximations to histograms for query opti-
mizations [42].

Unfortunately, wavelets also require multiple passes, rendering them too un-
suitable for use with data streams.

3.1.5 Sketches

The aforementioned techniques either focus on a small partition of the data
(sampling & sliding windows) or summarize the entire data (histograms),

22

possibly at multiple resolutions (wavelets).

A histogram requires multiple passes and stores only a single resolution. A
wavelet is an approximation of a histogram also requires multiple passes but
can store multiple resolutions. Next in that row is a sketch: it can maintain
an approximation of a full histogram in a single pass, and if desired can be
used to store multiple resolutions.

A sketch can be used to maintain the full histogram over the universe of
elements in a data stream in a single pass. Define the universe as U =
{1, 2, . . . , v} (with v the universe size) and the elements in the data stream
as A = {a1, a2, . . . , aN} (with possibly N = ∞). For each value i in the
universe, we want to maintain the frequency of i in the sequence of elements
A. If the universe is large, the required amount of storage can be large as
well. To achieve a smaller representation, we consider the frequency moments
of A. These are the numbers Fk:

Fk =
v∑
i=1

mk
i

where mi is the frequency of i in the sequence and k ≥ 0.

This can be interpreted as follows. Each example result is calculated over
the sequence 131113342.

• F0 is the number of distinct elements in the sequence, i.e.: 0 ≤ F0 ≤ v.
Applied to the example: F0 = 4.

• F1 is the length of the sequence, i.e.: F1 = N .
Applied to the example: F1 = 4 + 1 + 3 + 1 = 9.

• F2 is the so-called self-join size2, or also known as repeat rate or Gini’s
index of homogeneity.
Applied to the example: F2 = 42 + 12 + 32 + 12 = 27.

The frequency moments of a data stream (or any data set of fixed size)
provide useful information about this data for database applications, one
of which is the skew (or asymmetry) of the data. The skew can be used
to decide how to partition the data set for parallel or distributed database
systems.

2The self-join size F2 is also used to estimate the join size for RDBMSes in limited
space, see [47].

23

When the amount of available memory is smaller than v (the universe size),
we need to employ a synopsis. The estimation of the frequency moments can
be performed by sketches, which build a summary (requiring less space) for
a distribution vector (e.g. a histogram) using randomized linear projections
(i.e. linear hash functions) of the data they are fed (i.e. the data stream).
Sketches provide probabilistic guarantees on the quality of the approximate
answer. For example: the answer to the given query is 93±1 with a 95%
probability. Given N elements and a universe U of v values, such sketches
can approximate F0, F1 and F2 in O(log v + logN) space [43].

The most complex and interesting sketch is the one for approximating F2,
thus only that one will be explained more in-depth here.
The key idea behind the F2 sketching technique is as follows: every element i
in the domain D is hashed uniformly at random onto a value zi ∈ {−1,+1}.
Define the random variable X =

∑
imizi and return X2 as the estimator of

F2. Clearly, this estimator can be calculated in a single pass. Note that we
do not actually calculate mi in the formula for X: each time we encounter i,
we just update X by adding another iteration of mizi (which is why it can
work in a single pass). Hashing can be used because the actual value of each
i is irrelevant: we only want to know the frequency.
To explain why this works, we can think of hashing elements to either −1
or +1 as assigning each element value to an arbitrary side of a tug of war.
When we sum up to get X, we can think of measuring the displacement of
the rope from the center point. By squaring X, we square this displacement,
thereby capturing the data skew F2.

The sketching technique to compute F0 was presented in [70] (which is refer-
enced again in section 5.7.2), however, this required explicit families of hash
functions with very strong independence properties. In [43], this require-
ment was relaxed; it explains how F0, F1 and F2 can be approximated in
logarithmic space by using linear hash functions (which is why sketches hold
an advantage over wavelets in terms of storage). A single pass algorithm for
calculating the k-th frequency moment of a data stream for any real k > 2
is given in [44], with an update time of O(1). Finally, in [45], a simpler algo-
rithm (but with the same properties) is given. Another interesting sketching
method is given in [52].

3.1.6 Randomized Algorithms

Random sampling and sketching are examples of randomized algorithms.

24

Randomized algorithms that always return the correct answer but whose
running times vary are known as Las Vegas algorithms. In contrast, there
are also randomized algorithms that are bounded on running time but may
not return the correct answer; these are called Monte Carlo algorithms.

In the context of data stream mining, where the time to process incoming
data is obviously limited, we consider mainly Monte Carlo algorithms. A
randomized algorithm can be thought of as simply a probability distribution
over a set of deterministic algorithms.

25

3.2 Frequent Item Mining

Association rules are deduced automatically from a data set and define the
associations that apparently occur in the data set. E.g. people buying bread
in the super market also buy wine. Or, applied to this context: pages that
include a specific JavaScript file, are slow in a specific browser.

A typical goal in data mining is pattern mining, from which it is easy to
generate association rules. Association rules describe correlations between
items, such as “people who buy both milk and beer also tend to buy diapers
with 70% probability”. To find meaningful patterns, it is necessary to find
which itemsets occur frequently in a dataset, where an itemset is considered
frequent if its count satisfies a minimum support.

In the context of WPO, interesting patterns would consist of a URL that
loads slowly and all contextual attributes that occur many times in combina-
tion with that slowly loading URL: browser, physical location of the visitor,
ISP of the visitor, operating system, and so on.
E.g.: many page loads with a slow page load time that have the contextual at-
tributes “http://uhasselt.be/”, “Internet Explorer 8.0”, “Hasselt, Belgium”,
“Windows 7 SP1” would allow us to deduce that http://uhasselt.be/ is slow
in Hasselt, Belgium, but only on the Windows 7 SP1 operating system that
use the Internet Explorer 8.0 browser.
If also many page loads are slow with the contextual attributes “http://uhasselt.be/”,
“Internet Explorer 8.0”, “Windows 7 SP1” (i.e. with the specific location
“Hasselt, Belgium” no longer in the contextual attributes), then that implies
that it’s just the browser being slow (or the web site not being optimized
sufficiently for that browser) and not that the physical location of the visitor
causes the slowness.

Fast algorithms for mining frequent itemsets have been developed for static
data sets, such as Apriori and FP-growth. However, mining itemsets in dy-
namic data sets (i.e. data streams) creates a whole new set of challenges.
Existing algorithms such as Apriori [60] and FP-growth [61] (and many oth-
ers) depend on the ability to scan the entire data set (which may impossible
for data streams, since they might be infinite), and typically require multi-
ple passes. So how can we perform incremental updates of frequent itemsets,
while an infrequent itemset can become frequent at a later point in the data
stream, and vice versa? The number of infrequent itemsets also is expo-
nential, which makes it impossible to track all of them3. Thus, a synopsis

3It has been shown [48] that it is impossible to find the exact frequency of frequent
items using an amount of memory resources that is sublinear to the number of distinct
elements.

26

data structure (as explained in section 3.1) is obviously needed, or more
accurately: an algorithm that builds such a data structure.

There are two possible approaches to overcome this difficulty:

1. Only keep track of a predefined, limited set of item(set)s. This method
of course has very limited usage, because it will be unable to find fre-
quent item(set)s beyond the predefined scope.

2. Derive an approximate answer—while this will not be 100% correct, it
is often sufficient in practice.

Now, an itemset of course consists of items. Hence we will focus in frequent
item mining algorithms in this section and then look into frequent itemset
mining algorithms in the next. Note that by frequent item counting, we are
actually referring to highly frequent item counting. In the field of network
traffic flows, the problem of finding the largest traffic flows is also known as
the heavy hitter problem [56], so frequent item mining algorithms are some-
times also called heavy hitter algorithms.

All algorithms in this section and the next provide approximate answers.

Finally, examples of patterns that can be thought

3.2.1 Window Models

A data stream consist of elements, i.e. item(set)s, which arrive in a particular
order over time. There are several ways one can deal with this sequence
nature, existing models are [58]:

1. The landmark model: frequent item(set)s are mined in data streams by
assuming the item(set)s are measured from the beginning of the stream
until the current moment.
This model may not be desirable when changes of patterns (itemsets)
and their trends are more interesting than the patterns themselves.
E.g. a series of shopping transactions could start a long time ago (e.g.
a few years ago), but patterns found over the entire time span may be
uninteresting due to fashion, seasonal changes, and so on.

2. The sliding window model: frequent item(set)s are mined over only the
last w transactions, with w the window size.

27

3. The tilted-time window model: frequent item(set)s are mined over the
last w transactions, but only the most recent frequent item(set)s are
stored at fine granularity—frequent item(set)s in the past are stored at
coarser granularity.

4. The damped window model: a decay function is applied to the data
stream, to give more weight to recent data than to old data.

If this wasn’t clear yet: this classification is both applicable to both single
items (which is discussed in this section) and itemsets (discussed in section
3.3).

All frequent item mining algorithms in the remainder of this section are of the
landmark window model, the window model for the frequent itemset mining
algorithms in section 3.3 vary and are indicated on a per-algorithm basis.

Tilted-Time Window

The tilted-time window model needs a little bit more explaining.

The design of the tilted-time window is based on the fact that often the
details of recent changes are interesting, but over a longer period, less detail
is necessary.

Several ways exist to design a tilted-time window. Here are two common
examples:

1. Natural tilted-time window model. [41, 58] The time window is struc-
tured in multiple granularities, based on the “natural” (for humans)
time scale: the most recent 4 quarters of an hour, then the last 24
hours, 31 days and then 12 months. This can of course vary, depend-
ing on the application. See figure 3 for an example of what that looks
like.
Based on this model, we can compute frequent itemsets in the last hour
with the precision of a quarter of an hour, the last day with the precision
of an hour, and so on. This model registers only 4 + 24 + 31 + 12 = 71
units of time (quarters, hours, days, months respectively) instead of
365 × 24 × 4 = 35, 040 units of time—with the trade-off of coarser
granularity for the distant past.

2. Logarithmic tilted-time window model. [41] In this model, the granular-
ity decreases towards the past at an exponential rate. If the most recent
slot holds data for the last quarter, then the one before that also holds

28

Figure 3: Natural tiled-time window.
(Figure courtesy of [58].)

data for one quarter (the one before the most recent), then for 2 quar-
ters, 4, 8, 16, and so on. In this model, only dlog2(365× 24× 4) + 1e =
d16.1e = 17 units of time are needed.

3.2.2 Algorithm Classification

Currently known frequent item mining algorithms all rely on one of three
basic techniques [50, 55]:

• Counting: lossy counting (3.2.7), Karp/Demaine algorithm [59], proba-
bilistic lossy counting (3.2.9). In general, they use 1) a fixed or bounded
number of counters for tracking the size of frequent elements and 2) a
condition to periodically delete or reallocate counters of infrequent el-
ements.
Counting algorithms have low per-element overhead, as they only re-
quire incrementing a counter, along with a potentially high periodic
housekeeping step that may sort and delete counters.

• Hashing: count sketch (3.2.8), min-count sketch. They all use variants
of the same data structure, which most of them call a sketch, which is
a one- or two-dimensional array of hash buckets.
Hashing algorithms use fixed memory resources to estimate the fre-
quency of an arbitrary element of a data stream and provide proba-
bilistic guarantees on the estimation errors.

• Sampling: basic sampling (3.2.3), concise sampling (3.2.4), counting
sampling (3.2.5), sticky sampling (3.2.6).
Sampling algorithms reduce the required memory resources and the
processing overhead for identifying frequent items. The downside is
that they typically have a lower estimation accuracy.

The algorithms are explained in the next subsections, in order of being pub-
lished—with the additional goal of providing an (approximation of) the time-
line over which new, improved algorithms have been invented.

29

By including the older algorithms upon which the newer ones are based, it
also becomes more clear how we ended up with the current state-of-the-art
algorithms.

3.2.3 Basic Sampling

Note that this algorithm is the most basic sampling algorithm [55] and that
other algorithms such as concise sampling (see section 3.2.4), count sampling
(see section 3.2.5) and sticky sampling (see section 3.2.6) build upon it. It
requires the size of the data set to be known in advance, which renders it
useless for use with data streams. It is only listed here fore reference.

This algorithm is the most straightforward solution for counting item fre-
quencies: it keeps a uniform random sample of the elements, stored as a
list L of items, with a counter for each item. If the same element is added
multiple times, its counter is incremented (the element is not added multiple
times to L).

If x is the size of the sample (counting repetitions) and N the size of the
data set, then the probability of being included in the sample is x

N
, the count

of the kth most frequent element is denoted nk (i.e. n1 ≥ n2 ≥ . . . ≥ nk ≥
. . . ≥ nm) and let fi = ni

N
. To guarantee that all top k elements will be in

the sample, we need x
N
> O(log N

nk
), thus x > O(log N

fk
).

3.2.4 Concise Sampling

This is a variant of the basic sampling algorithm given in section 3.2.3. In-
troduced by P. B. Gibbons and Y. Matias in 1998 [49], the concise sampling
algorithm keeps a uniformly random sample of the data, but does not assume
that the length of the data set is known beforehand (which the general sam-
pling algorithm of section 3.2.3 does assume), hence making this algorithm
suitable for use with data streams.

Again a list of items with a counter for each item is kept, i.e. a list L of (e, c)
pairs with e the element and c its count.

It begins optimistically, assuming that we can include elements in the sample
with probability 1

r
, with threshold r = 1. As it runs out of space, the

threshold r is increased to r′ repeatedly; until some element is deleted from
the sample: each of the sample points in L is evicted with probability r

r′
. We

then continue with this new, higher r′.

30

The invariant of the algorithm is that at any point, each item is in the sample
with the current probability 1

rc
. At the end of the algorithm (i.e. the end of

the data stream, if there is an end), there is some final probability 1
rf

.

No clean theoretical bound for this algorithm is available: it can only be
calculated for specific distributions. E.g. for exponential distributions, the
advantage is exponential: this means that the sample size is exponentially
larger than the memory footprint for this sample size.

Note: the reader familiar with data compression techniques may have aptly
noted that this is indeed very similar to the simple, yet widely utilized run-
length encoding technique [51]!

3.2.5 Counting Sampling

Counting sampling is merely a small optimization to concise sampling (and
is discussed in the same paper by P. B. Gibbons and Y. Matias from 1998
[49]); it is based on the simple observation that so long as space is set aside
for a count of an item in the sample anyway, we may as well keep an exact
count for the occurrences.

This change improves the accuracy of the counts of items, but does not
change which elements will actually get included in the sample.

Since this is only an optimization and the essence of the concise sampling
remains untouched, no clean theoretical bound on the space complexity of
this algorithm exists either.

3.2.6 Sticky Sampling

The sticky sampling algorithm is an enhanced version of the counting sam-
pling algorithm. The difference is that in sticky sampling, the sampling rate r
increases logarithmically, proportional to the size of the stream. Additionally,
it guarantees to produce all items whose frequency exceed a user-specified
minimum support parameter s, instead of just the top k. The user can also
specify an acceptable error margin ε ∈ [0, 1] and an acceptable probability of
failure δ ∈ [0, 1] to meet this error margin.
It was presented in 2002 by G. S. Manku and R. Motwani [53].

Guarantees

A very clear set of guarantees is given for this algorithm:

31

1. All items whose true frequency exceeds sN are output. There are no
false negatives.

2. No items whose true frequency is less than (s− ε)N are output.

3. Estimated frequencies are less than the true frequencies by at most εN
with probability 1− δ.

We say that the algorithm maintains an ε-deficient synopsis if its output
satisfies these guarantees.

Guarantees Example

For example, if the goal is to identify all items whose frequency is at least 1%,
then s = 1%. The user is allowed to set the error margin ε to whatever value is
considered acceptable. Let’s assume a 5% margin of error is acceptable, then
ε = 0.05% = 5%× s. Then, as per guarantee 1, all elements with frequency
exceeding s = 1% will be output, and there will be no false negatives. As per
guarantee 2, no element with frequency below 0.95% will be output. This
leaves elements with frequencies between 0.95% and 1%. These might or
might not form part of the output. Those that make their way to the output
are false positives. Further, still as per guarantee 3, all individual frequencies
are less than their true frequencies by at most 0.05%.

The approximation in this algorithm has two kinds of errors: 1) false positives
still have high frequencies, 2) individual frequencies have small errors. Both
kinds of errors are tolerable in the context of frequent item mining.

Algorithm

The algorithm in se is the same as the one for concise sampling, with a dif-
ferent method for changing the sampling rate r: it increases logarithmically.
Formally: let t = 1

ε
log(s−1δ−1). The first 2t elements are sampled at r = 1,

the next 2t elements are sampled at rate r = 2, the next 4t at r = 4, and so
on.

Whenever the sample rate changes, we also scan L’s entries and update them
as follows: for each entry (e, c), we repeatedly toss an unbiased coin until the
coin toss is successful, diminishing c by one for every unsuccessful outcome.
If c becomes 0 during this process, we delete the entry from L. The number
of unsuccessful coin tosses follows a geometric distribution, which can be
efficiently computed [54].

32

Effectively, this will have transformed L to the state it would have been in
if we had been sampling with the new rate from the start.

When a user requests a list of items with threshold s, we output the entries
in L where c ≥ (s − ε)N . One can prove that the true supports of these
frequent items are underestimated by at most ε with probability 1− δ.

Space

Its name is derived from the analogy with a magnet: L sweeps over the data
stream like a magnet, attracting all elements which already have an entry
in L. Note that the space complexity of sticky sampling is independent of
N : the space requirements are 2t as said before, t is known, thus the space
bound is O(2

ε
log(s−1δ−1). Consult [53] for the proof.

3.2.7 Lossy Counting

This is the first algorithm in our list that is deterministic instead of proba-
bilistic. It was presented in the same paper that introduced sticky sampling,
by G.S. Manku and R. Motwani, in 2002 [53]. It uses at most 1

ε
log(εN)

space, where N denotes the length of the stream so far—contrary to the
sticky sampling algorithm described in the previous section, this algorithm is
not independent of N . This algorithm performs better than sticky sampling
in practice, although in theory, it is worst-case space complexity is worse.

Guarantees

A very clear set of guarantees is given for this algorithm:

1. All items whose true frequency exceeds sN are output. There are no
false negatives.

2. No items whose true frequency is less than (s− ε)N are output.

3. Estimated frequencies are less than the true frequencies by at most εN .

We say that the algorithm maintains an ε-deficient synopsis if its output
satisfies these guarantees.

Note that guarantee 3, unlike the third guarantee for 3.2.6, does not have a
failure probability.

33

Guarantees Example

The same guarantees example as for sticky sampling applies to lossy counting.

Definitions

The incoming stream is conceptually divided into buckets of width w =
⌈
1
ε

⌉
transactions each. Buckets are labeled with bucket ids, starting from 1. The
current bucket id is denoted by bcurrent, whose value is

⌈
N
w

⌉
, with N again

the length of the data stream so far. For an element e, we denote its true
frequency in the stream so far by fe.
Note that ε and w are fixed while N , bcurrent and fe are variables whose values
change as the stream flows in.

Our data structure D is a set of entries of the form (e, f,∆), where e is an
element in the stream, f is an integer representing the estimated frequency
of e, and ∆ is the maximum possible error in f .

In this algorithm, the stream is divided into buckets, but in other algorithms
they are typically called windows : in the context of this algorithm, they are
equivalent concepts.

Algorithm

Initially, D is empty.

Whenever a new element e arrives, we first scan D to check if an entry for
e already exists or not. If an entry is found, we update it by increment-
ing its frequency f by one. Otherwise, we create a new entry of the form
(e, 1, bcurrent − 1). Why the value for ∆ is being set to bcurrent − 1 will be
explained later on.
So far, the frequency counts hold the actual frequencies rather than approx-
imations. They will become approximations because of the next step.

We also prune D by deleting some of its entries at bucket boundaries, i.e.:
whenever N ≡ 0 mod w. In other words: we prune D when the next bucket
in the stream begins. The rule for deletion is simple: an entry (e, f,∆) is
deleted if f + ∆ ≤ bcurrent. In other words: elements with a small frequency
are deleted; or more accurately: e is deleted if it occurs at most once per
bucket on average.
Because of this step, the frequency counts now contain approximations of the
actual frequencies. Note that these approximations will always be underes-
timations.

34

At any point of time, the algorithm can be asked to produce a list of items,
along with their estimated frequencies. When such a request is made by the
user, we output those entries in D where f ≥ (s− ε)N . This condition guar-
antees that all items whose true frequency exceeds sN are output, but allows
for some false positives to leak through, although they have a frequency that
is almost high enough to qualify as truly frequent.

Insight in How the Algorithm Works

For an entry (e, f,∆), f represents the exact frequency count of e ever since
this entry was last inserted into D. The value of ∆ assigned to a new entry is
the maximum number of times e could have occurred in the first bcurrent − 1
buckets. This value is exactly bcurrent − 1, because otherwise e would not
have been deleted. Once an entry is inserted into D, its ∆ value remains
unchanged.

Upon insertion, ∆ is being set to bcurrent− 1, which is the maximum number
of times e could have occurred in the first bcurrent−1 buckets, but was deleted
at some point in the past because its maximum frequency (f + ∆) was not
sufficiently high (f + ∆ ≯ bcurrent). Therefore, the average frequency of e
over the past buckets must have been less than 1: fe

bcurrent
≤ 1.

We can deduct this minimum average occurrence from the fact that the
deletion rule is f + ∆ ≤ bcurrent: this is not satisfied as soon as the f is
incremented by at least one for every observed bucket. This effectively means
that this algorithm will store all elements which occur more than once per
bucket on average.
Since an element is deleted when f + ∆ ≤ bcurrent, and we know that b ≤
N
w

= N
1
ε

= εN , we can conclude that an item can be underestimated at most

by εN .

Space

Lossy counting uses at most 1
ε

log(εN) entries, where N is again the current
stream length. If elements with very low frequency (at most εN

2
) tend to occur

more or less uniformly at random, then lossy counting requires no more than
7
ε

space. Proofs can be found in [53].

3.2.8 Count Sketch

Count Sketch is in fact not the name of this algorithm that was published in
2002 [55], but of the data structure it relies on to estimate the most frequent

35

elements in a data stream in a single pass. A nice side-effect is that this
algorithm leads directly to a two-pass algorithm for estimating the elements
with the largest (absolute) change in frequency between two data streams.

Intuition

We begin from a very simple algorithm and go to the final algorithm on a
step-by-step basis.

Let S = q1, q2, . . . , qn be a data stream, with each qi ∈ U = {e1, e2, . . . , em}
(i.e. m different elements in the universe). If each element ei occurs ni times
in S, then that is so that n1 ≥ n2 ≥ . . . ≥ nm, i.e. n1 is the most frequent
element, n2 the second most frequent, and so on.

First, let s be a hash function from elements to {+1,−1} and let c be a
counter. As we process the incoming objects of the stream, each time we
encounter an element ei, we update the (single) counter c = c + s(qi). We
can then estimate the ith most frequent item ni as follows: E[c · s[qi]] = ni.
However, the variance of every estimate is obviously very large.

A natural solution to this problem is to use more counters. I.e. use t hash
functions s1, . . . , st and maintain t counters c1, . . . , ct. Then to process an
element qi, we need to update all counters: cj = cj + sj(qi), for each j.
Now we have E[ci · si[qi]] = ni. We can then take the mean or median of
these estimates to achieve a new estimate with a lower variance than in the
previous approach.

However, high frequency elements can spoil the estimates of low frequency
elements, because for each element that is encountered, all counters are up-
dated. Therefore we propose an alternative: we replace each of the t counters
by a hash table of b counters and have all elements update different subsets
of counters, one per hash table (i.e. all t “counter hash tables” are updated,
but only one counter per hash table). This way, every element will get a suf-
ficient amount of high-confidence estimates (since only a few will have large
variance thanks to this randomized counter updating process) and there-
fore all elements can be estimated with sufficient precision. Now we have
E[hi[q] · s[q]] = nq. Note that by increasing the number of counters per hash
table b to a sufficiently large amount, the variance can be decreased to an
acceptable level and by making the number of hash tables t sufficiently large,
we will make sure that each of the m estimates (i.e. one for every element in
the universe) has the desired variance.

36

Algorithm

Let h1, . . . , ht be hash functions from objects to {1, . . . , b} and s1, . . . st also
be hash functions from objects to {+1,−1}. The CountSketch data structure
consists of these hash functions hi and si, along with a t×b array of counters,
which should be interpreted as an array of t hash tables that each contain b
buckets. Both t and b are parameters to the algorithm and their values will
be determined later.

Note that the idea of hashing elements onto −1 and +1 for estimation has
already been used and explained before, for approximating the F2 frequency
moment—see section 3.1.5.

The data structure supports two operations:

• add(C,q): for i=1 to t do hi[q] += si[q]

• estimate(C, q): return mediani {hi[q]·si[q]}

We use the median instead of the mean because the mean is—as is well-
known—very sensitive to outliers, whereas the median is more robust.

Once this data structure is implemented, the algorithm that belongs with it
is straightforward and simple to implement. The CountSketch data structure
is used to estimate the count each element in the data stream; to keep a heap
of the top k elements seen so far. Formally: given a data stream q1, . . . , qn,
for each j = 1, . . . , n:

• add(C,qj)

• If qj is in the heap, increment its count. Else, add qj to the heap, but
only if estimate(C, q) is greater than the smallest estimated count
in the heap; this smallest estimated count should then be deleted from
the heap, to make room for qj.

The algorithm requires O(tb + k) space. It is also possible to bound t and
b, but that would involve several proofs, thereby leading us too far—consult
[55] for that.

3.2.9 Probabilistic Lossy Counting

One of the most efficient and well-known algorithms for finding frequent items
is lossy counting (see section 3.2.7). In [56], published in 2008, a probabilistic

37

variant of lossy counting was introduced, with the unsurprising name Proba-
bilistic Lossy Counting (PLC). It uses a tighter error bound on the estimated
frequencies and provides probabilistic rather than deterministic guarantees
on its accuracy.
The probabilistic-based error bound substantially improves the memory con-
sumption of the algorithm: it makes PLC less conservative in removing state
for elements with a low frequency. In data streams with a large amount of
low-frequency elements, this drastically reduces the required memory.
On top of this, PLC also reduces the rate of false positives and still achieves
a low, although slightly higher estimation error.

When they applied PLC to find the largest traffic flows (which in the network
traffic flow context are typically called heavy hitters) show that PLC has
between 34.4% and 74% lower memory consumption and between 37.9% and
40.5% fewer false positives, while maintaining a sufficiently small (but as
already mentioned, slightly higher) estimation error. Note that these tests
were conducted with a very large proportion of small traffic flows (98.9%).
In the original PLC paper, network traffic flows are used to compare PLC
with LC. The researchers want to identify the largest traffic flows, to be able
to identify denial of service (DoS) attacks, to monitor traffic growth trends,
to warn heavy network users, and so on.

Observations Leading to PLC

Remember, LC uses a data structureD which consists of a set of entries. Each
entry is of the form (e, f,∆). Look at 3.2.7 again to refresh your memory if
necessary.

The maximum possible error ∆ associated with each element is used when
determining which elements to remove from D. An entry is deleted if f+∆ ≤
bcurrent. Since ∆ is initialized to bcurrent−1 (to adjust for all possible buckets
in which e might have occurred), this maximum possible error ∆ may be
large so that the entry stays in D unnecessarily long. That is, when an entry
for an element stays in D for more buckets, then according to Little’s law
[57], the average size of D increases. Thus, the value of the maximum possible
error ∆ has a direct impact on the memory consumption of the algorithm.
This is the key observation.

The main improvement of PLC over LC is then to make ∆ substantially
smaller by providing probabilistic guarantees (versus LC’s deterministic error
bound). The probabilistic value for ∆ as generated by PLC guarantees with

38

Figure 4: Cumulative error distribution of elements entering D at buckets (or
windows) 400 and 1000, 95-percentile of error distribution, and deterministic
error bound of LC.
Note that the deterministic bound is significantly larger than the 95 per-
centile. The data stream is a trace of network traffic flow.
(“CCDF” in the chart corresponds to δ and “error” corresponds to ∆.)
(Figures courtesy of [56].)

a desired probability 1 − δ (with δ � 1) that the error of the frequency of
an element is smaller than the bound.

In figure 4, the difference in maximum error bound between PLC and LC
is demonstrated for a data stream with a very large proportion (98.9%) of
low-frequency elements. While this may be considered an extreme example,
it still shows the potential for improvement that PLC entails: since there
is a large number of low-frequency elements, the decrease in ∆ that PLC
promises can drastically reduce the size of D.

Guarantees

The user can still specify an acceptable error margin ε ∈ [0, 1], but unlike LC
an acceptable probability of failure δ ∈ [0, 1] to meet this error margin can
be set once again (like sticky sampling, see 3.2.6).

A very clear set of guarantees is given for this algorithm:

1. All items whose true frequency exceeds sN are output. There may be
false negatives, although [56] found that false negatives are unlikely in

39

practice. The probability of false negatives can be controlled using the
δ parameter.

2. No items whose true frequency is less than (s− ε)N are output.

3. Estimated frequencies are less than the true frequencies by at most εN
with probability 1− δ.

Algorithm

The algorithm is identical to the one of LC. The only exception is the value
of the maximum possible error ∆. To find this value, [56] assumes that the
data stream’s element frequencies follow a power-law distribution (they don’t
give a solution for non-power-law distributions).

In their case of network flow traffic, they have empirically observed that it
follows a Zipfian distribution. Providing the entire proof would lead us too
far, thus consult [56] for full details.

If Y is a random variable that denotes the true frequency of an element,
then Pr(Y > y) = αyβ, where α (α ≤ 1) and β are the parameters of the
power-law distribution. Then we end up at:

∆ = β
√
δ(1− (bcurrent − 1)β + (bcurrent − 1)β

We still need to calculate β. With probability 1 − δ, the set of entries D
contains all the elements with true frequency larger than bcurrent − 1. The
frequency distribution of these elements is:

Pr(Y > y|Y > bcurrent − 1) =
Pr(Y > y)

Pr(Y > bcurrent − 1)
=

yβ

(bcurrent − 1)β

Note that this frequency distribution also follows a power-law with the same
parameter β as the overall frequency distribution of the data stream. Thus,
we can estimate β on-line by fitting a power-law on the frequency distribution
of elements in D with f > bcurrent− 1. This of course has the limitation that
we are using the estimated frequency f instead of the true frequency. In
practice, they found that the estimated frequencies are almost identical to
the true frequencies, with a very small error, thereby introducing a negligible
error.

40

Space

The worst-case memory bounds for PLC are the same as those for LC. The
average case has the potential to use far less space though, thanks to the
more aggressive pruning step.

Evaluation

PLC exploits data streams that tend to have a lot of low-frequency items.
For such data streams, PLC is an optimization worth pursuing since the
memory consumption savings can be significant.
However, for data streams with relatively equally divided frequencies, there
is no memory footprint to gain, but some accuracy is lost and additional
computations are necessary.

Clearly, PLC should only be used for data streams with a large proportion
of low-frequency items.

41

3.3 Frequent Pattern (Itemset) Mining

Several frequent pattern mining algorithms have been investigated, and they
are again presented in order of appearance. Pattern mining works with
itemsets (there are no patterns to be found in single items), which are often
called transactions.

Note that the introduction of frequent item mining is still applicable (section
3.2), as are the explanations about window models (section 3.2.1) and the
algorithm classification (section 3.2.2).

3.3.1 Lossy Counting for Frequent Itemsets

This algorithm (which is one of the landmark model) builds upon the lossy
counting (LC) algorithm (see section 3.2.7), to add support for frequent item-
set mining. It was introduced by the same paper [53].

However, it clearly is much more difficult to find frequent itemsets than items
since the number of possible itemsets grows exponentially with the number
of different items: many more frequent itemsets are possible than the items
they consist of.

Changes

The set of entries D does no longer contain entries of the form (e, f,∆), but
of the form (set, f,∆), where set is a subset of items.

We no longer process the stream transaction per transaction, because then
memory consumption would rise significantly. Instead, we try to fill available
main memory with as many transactions as possible and then process such a
batch of transactions together. Let β denote the number of buckets in main
memory in the current batch being processed. We then update D as follows:

• update set: For each entry (set, f,∆) that exists in D, update f by
counting the occurrences of set in the current batch.
The updated entry is deleted if f + ∆ ≤ bcurrent, just like in LC.

• new set: If a set set in the current batch has frequency f ≥ β, and
does not yet exist in D, add a new entry (set, f, bcurrent − β) to D.
This too, is analogous to what happens in LC, and is merely adjusted
to work with itemsets instead of items.

42

It is important that β is a large number: this will save memory because all
itemsets with a frequency less than β will never enter D and therefore save
memory. For smaller values of β (such as β = 1 when working with frequent
items instead of frequent itemsets), more spurious subsets will enter D, which
would drastically increase the average size of D, as well as drastically increase
the refresh rate—effectively harming the algorithm in both time and space.

3.3.2 FP-Stream

FP-stream, published in 2003 [58], is designed to mine time-sensitive data
streams. It actively maintains frequent patterns4 under a tilted-time window
framework (explained a couple of paragraphs further) in order to answer time-
sensitive queries. The frequent patterns are compressed and stored using a
tree structure similar to FP-tree5, and updated incrementally as new data
flows in.

The task FP-stream wants to solve is to find the complete set of frequent
patterns in a data stream, with the limitation that one can only see a limited
set of transactions (those in the current window) at any moment.

In the FP-growth algorithm [61], the FP-tree provides a structure to facilitate
mining in a static data set environment (or a data set that is updated in
batches).
In the FP-stream algorithm, two data structures are used:

1. A FP-tree in main memory for storing transactions of the current win-
dow.

2. A pattern-tree, which is a tree structure similar to an FP-tree, but with
tilted-time windows embedded in it, for storing frequent patterns of the
windows in the past.

Incremental updates can be performed on both of these parts. Incremental
updates occur when some infrequent patterns become subfrequent or fre-
quent, or vice versa. At any point in time, the set of frequent patterns over
a period can be obtained from the pattern-tree in main memory.

4In [58], frequent itemsets are called frequent patterns, a name that was kept throughout
this section on FP-stream for clarity because some FP-stream-specific structures include
“pattern” in their names.

5It is assumed the reader is already familiar with the FP-growth algorithm [61]—if not,
that should be read first; note that a very clear explanation of FP-growth is available in
[25], including excellent figures to explain the data structures it uses.

43

Figure 5: Frequent patterns for tilted-time windows.
(Figure courtesy of [58].)

Figure 6: Pattern tree.
(Figure courtesy of [58].)

Mining Time-Sensitive Frequent Patterns in Data Streams

FP-stream can use any tilted-time window model (for more information
about window models and the tilted-time window model in particular, please
see 3.2.1). We focus on FP-stream with a natural tilted-time window model
(see figure 3 on page 29 again).

For each tilted-time window, a frequent pattern set is maintained—see figure
5. This allows us to answer queries like:

• What is the frequent pattern set over the periods t2 and t3?

• What are the periods when the pattern (a, b) is frequent?

• Does the support of (a, b, c) change dramatically in the period from t3
to t0?

• . . .

44

Figure 7: Tilted-time windows embedded in pattern-tree.
(Figure courtesy of [58].)

That is, we have sufficient flexibility to mine a variety of types of frequent
patterns associated with time—possibilities are:

• Mining frequent patterns in the current window—obviously this is the
most basic requirement.

• Mining frequent patterns over time ranges with different granularities.

• Placing different weights on windows to mine weighted frequent pat-
terns.

• Mining evolution of frequent patterns based on the changes of their
occurrences in a sequence of windows.

However, we can store this frequent pattern set much more efficiently using
a compact tree presentation, called a pattern-tree. See figure 6. Note the
strong resemblance in structure with an FP-tree. The difference is that in
an FP-tree, all incoming transactions (itemsets) are stored, whereas in a
pattern-tree, only frequent patterns (itemsets) are stored. In fact, a pattern-
tree (as described thus far) is the same as an FP-tree, but it gets fed different
data: frequent transactions only instead of all transactions.

Finally, frequent patterns usually do not change significantly over time.
Therefore the pattern-trees for different tilted-time windows will likely have
a considerable amount of overlap. If we can embed the tilted-time window
structure into each node of the pattern-tree, we can save memory. The im-
portant assumption here is that frequencies of items do not change drastically
and thus the FP-tree structure (its hierarchical structure) does not need to
change6.

6This requires knowledge about the original FP-growth algorithm [61].

45

Thus, we use only a single pattern-tree where at each node the frequency for
each tilted-time window is maintained. This final structure is what we call a
FP-stream. See figure 7 for an example of this.

Maintaining Tilted-Time Windows

As new data flows in, the tilted-time window table grows. In the case of
a natural tilted-time window, which is the running example, we need 4 +
24 + 31 + 12 = 71 windows. For this tilted-time window model, it is very
straightforward to perform maintenance: when 4 “quarter windows” have
been collected and a fifth has begun, they are merged to form 1 new “hour
window”. Analogously, when 24 “hour windows” have been collected and a
25th has begun, these 24 windows are merged to form one new “day window”,
and so on.

Tail Pruning

Given a batch of transactions B, let fI(i, j) denote the frequency of I in
B(i, j).

Let t0, . . . , tn be the tilted-time windows which group the batches seen thus
far, with tn the oldest and t0 the current. The window size of ti is denoted
wi (the number of transactions in the window).

The goal of FP-stream is to mine all frequent itemsets whose support is larger
than σ over period T = tk ∪ tk+1 ∪ . . . ∪ tk′ (with 0 6 k 6 k′ 6 n). Then the
size of T clearly is W = wk +wk+1 + . . . +wk′ . This goal can only be met if
we maintain all possible itemsets over all these periods no matter if they are
frequent or not7. However, this would require too much space.

Fortunately, there is a way to approximate this (and thus require less space).
Maintaining only fI(t0), . . . , fI(tm−1) for some m (with 0 6 m 6 n) and drop-
ping the remaining tail sequences of tilted-time windows is sufficient. Specif-
ically, we drop tail sequences fI(tm), . . . , fI(tn) when the following conditions
hold:

∃l,∀i, l 6 i 6 n, fI(ti) < σwi

and

∀l′, l 6 m 6 l′ 6 n :
l′∑
i=l

fI(ti) < ε
l′∑
i=l

wi

7Maintaining only frequent tilted-time window entries is not sufficient: as the stream
progresses, infrequent itemsets may become frequent.

46

These conditions imply that all itemsets will be dropped that:

• have a frequency smaller than the minimum frequency per window
(σwi) in any window from window l until the nth, i.e. first, i.e. most
distant past window (fI(ti) < σwi), and ;

• have a frequency over all windows l through n or l′ through n that is
lower than the average allowed error rate

As a result, we no longer have an exact frequency over T , but an approximate

frequency f̂I(T) =
∑min{m−1,k′}

i=k fI(ti) if m > k and f̂I(T) = 0 ∼ εW if
m 6 k. The approximation is less than the actual frequency by at most as
much as:

fI(T)− εW 6 f̂I(T) 6 fI(T)

Thus, if we deliver all itemsets I for which f̂I > (σ − ε)W , we will not miss
any frequent itemsets over the period T . As a side-effect, we may incorrectly
return some itemsets whose real frequencies are between (σ− ε)W and σW .
This is reasonable when ε is small.

We call this tail pruning.

Type I & II Pruning

For any itemsets I ⊆ I ′, the following holds: fI ≥ fI′ . This is known as
the anti-monotone property : the frequency of an itemset is always equal or
larger than the the frequency of its supersets.
It can be shown that this still holds in the current context of approximate
frequency counting and tilted-time windows [58].

From this, it immediately follows that if an itemset I is in the current batch
B, but is not in the FP-stream structure, then no superset is in the structure.
Therefore, if fI(B) < ε |B|, then none of the supersets need to be examined.
So the mining of B can prune its search and not evaluate supersets of I.

We call this type I pruning.

The consequence in the other direction is that if an itemset I is being dropped
from the FP-stream structure, then all its supersets can also be dropped.

We call this type II pruning.

47

Algorithm

For an in-depth explanation and evaluation of the algorithm, we refer to [58],
sections 3.6, 3.7 and 3.8.

48

Figure 8: An example of anomalies in a 2D data set.
(Figure courtesy of [62].)

4 Anomaly Detection

Data stream mining can only find frequently occurring pat-
terns, because that is exactly what frequent pattern mining is
about. However, we also want to be able to detect occasional
spikes instead of just the persistent problems. For example, spikes
may occur only on the first day of the month (because people can
enter the monthly contest on that day), which the web server
may not be able to cope with properly. Detecting these infre-
quent problems is exactly what anomaly detection is for.

This section is based on the comprehensive survey on anomaly detection by
Chandola, Banerjee and Kumar [62].

4.1 What are Anomalies?

Anomalies are patterns in data that to not conform to a notion of “normal
behavior”. This can be easily illustrated through a figure: see figure 8. It
illustrates anomalies in a simple 2D data set. The data set has two “normal”
regions: N1 and N2. They are considered “normal” since most of the obser-
vations lie in these two regions. Points that are sufficiently far away from N1

and N2 are considered anomalies. In this example, that would be points o1
and o2, as well as all points in region O3.

49

Anomalies can be triggered by a variety of causes, depending on their context;
ranging from malicious activities (such as intrusions, credit card fraud, insur-
ance fraud, attack of a computer system) to mere anomalous circumstances
(such as an extremely long winter, an extreme amount of rainfall). All these
anomalies have in common that they are interesting to the analyst—there
must be real life relevance to make it into an anomaly.

Fields related to anomaly detection are noise removal, noise accommodation
(both of which deal with removing uninteresting data points from a data
set that are acting as a hindrance to data analysis) and novelty detection
(detecting previously unobserved patterns in the data set).

4.2 Challenges

Conceptually, an anomaly is defined as a pattern that does not correspond
to normal behavior. So, one would think that while looking at a specific
region, one could easily discern the data that is not normal as an anomaly.
Unfortunately, several factors make this simple approach impossible:

• When malicious actions cause anomalies, the malicious adversaries of-
ten try to adapt themselves to make the anomalous events appear nor-
mal, thereby making detecting them much more difficult.

• The definition of “normal behavior” may evolve over time, thus the
current definition may no longer be representative in the future (cfr.
people’s signatures that change over time).

• In one domain, a small fluctuation may be considered normal, and
in another it may be considered an anomaly. Thus techniques of one
domain are not necessarily easily applied in another domain.

• Data sets often contain noise that tends to be similar to the actual
anomalies, which makes it difficult to detect the actual anomalies.

Due to the above challenges (and this list is not exhaustive), the anomaly
detection problem in its most general form is hard to solve: a technique
for one domain does not necessarily work for another. That is why existing
anomaly detection techniques are often designed especially for one particular
domain.

Concepts from other disciplines such as statistics, machine learning, data
mining, information theory and spectral theory have been used to develop
techniques for specific anomaly detection problems.

50

4.3 Types of Anomalies

Anomalies can be classified into three classes:

4.3.1 Point Anomalies

If an individual data point can be considered anomalous in comparison with
the rest of the data set, then this data point is called a point anomaly. This
is the simplest type of anomaly, and the majority of the research is focused
on this type.

The example (see figure 8 again) used in the introduction contains point
anomalies.

For a real life example, let us look at a simple credit card fraud detection
technique: if the amount spent in a transaction (the sole attribute of each
data point) is very high compared to the average amount, that will be con-
sidered a point anomaly.

4.3.2 Contextual Anomalies

If a data point is anomalous in a specific context (but not otherwise), then it
is called a contextual anomaly.

A context is provided by the structure of the data set: each data point is
defined using two sets of attributes:

1. Contextual attributes. These form the context for a data point. e.g. in
spatial data sets, the longitude and latitude of a location are contextual
attributes. In time-series data, time is a contextual attribute.

2. Behavioral attributes. These define the non-contextual properties of
a data point. e.g. in a spatial data set that describes the average
rainfall of the entire world, the amount of rainfall at any location is a
behavioral attribute.

The anomalous behavior is then determined using the values for the behav-
ioral attributes within a specific context. A data point may be a contextual
anomaly in a given context, but another data point with identical behavioral
attributes in another context (i.e. with different contextual attributes) may
be considered normal.

51

Figure 9: Example of a contextual anomaly. The temperature at time t1 is
the same as that at t2, but occurs in a different context: the temperature at
t1 is considered normal, the temperature at t2 is considered an anomaly.
(Figure courtesy of [62].)

Contextual anomalies are most commonly investigated in time-series data
sets; figure 9 shows an example.
A similar example can be found in the credit card fraud detection domain,
that was used for an example of point anomalies previously. Suppose that
besides amount spent (which is of course a behavioral attribute), there is
another, contextual attribute: time of purchase. A €50 weekly shopping bill
is normal for a given individual, except in December, when he goes buying
presents for Christmas and New Year’s Eve, then a €200 bill is quite normal.
Therefore a €200 bill in February will be considered a contextual anomaly,
although a €200 bill in December will not be.

4.3.3 Collective Anomalies

If a collection of data points is anomalous when compared with the entire
data set, it is called a collective anomaly. The individual data points in a
collective anomaly may not be anomalies on their own, but their collective
occurrence is anomalous.

In figure 10, a medical example is shown: it is the output of a human elec-
trocardiogram. The highlighted region is a collective anomaly because the
same low value exists for an abnormally long time, although by itself this
low value is not an anomaly (i.e. one such data point with this low value is
not an anomaly).

Note: while point anomalies can occur in any data set, collective anomalies
can only occur in data sets whose data points are related. By including pos-

52

Figure 10: Example of a collective anomaly in a human electrocardiogram.
(Figure courtesy of [62].)

sible contextual information (i.e. if it is available), both a point anomaly
detection problem and a collective anomaly detection problem can be trans-
formed into a contextual anomaly detection problem.

4.4 Anomaly Detection Modes

Labeling data points in an accurate manner, while ensuring that all types of
behaviors are represented, may be prohibitively expensive. Labeling is often
performed manually by a human expert—which clearly requires substantial
effort. Typically, getting a labeled set of anomalous data that covers all
possible types of anomalous behavior is more difficult than getting labels for
normal behavior. Additionally, new anomalies may arise over time, for which
there is no labeled training data.

Anomaly detection techniques can operate according to three possible modes.
Which mode can be used depends on the availability of labels:

• Supervised Anomaly Detection. For supervised mode techniques, the
availability of a a training data set with labels for normal and anomaly
classes is a requirement.

• Semi-Supervised Anomaly Detection. Techniques that operate in this
mode, training data has labeled data points for only the normal class.
Because they do not need require labels for the anomaly class, they are
more widely applicable than supervised techniques.

53

• Unsupervised Anomaly Detection. These techniques don’t require any
training data and therefore are most widely applicable. They do make
the assumption, however, that normal instances are far more frequent
than anomalies. If this assumption is false, then a high false alarm rate
is the consequence.

4.5 Anomaly Detection Output

An obvious, yet important aspect of anomaly detection is the output of the
technique used, which can be of either of the following two types:

• Scores. Scoring techniques assign an anomaly score to each data point
in the data set, depending on the degree of anomalousness of that data
point.

• Labels. Labeling techniques assign a label—either “normal” or “anoma-
lous”—to each data point.

Note: scoring based anomaly detection techniques allow for a selection within
all anomalies, e.g. to select the worst anomalies only.

4.6 Contextual Anomaly In Detail

There are many possible types of contextual attributes, some of which are:

1. Spatial. e.g. latitude and longitude

2. Graphs. The edges that connect nodes (with each node being a data
point) define the neighborhood for each node (data point).

3. Sequential. The data set contains sequential data points, i.e. the con-
textual attributes of a data point define its position in the sequence.
Note that there is an important difference between time-series data and
event sequence data: time-series data haven even inter-arrival times,
whereas event sequence data have uneven inter-arrival times.

While a lot of literature is available for point anomaly detection techniques,
the research on contextual anomaly detection has been limited. Contextual
anomaly detection techniques can be divided in two categories:

54

1. Reduction to a point anomaly detection problem. Contextual anomalies
are individual data points (like point anomalies), but are anomalous
only with respect to a certain context.
An obvious generic reduction technique is then to first identify a context
under which to operate and then perform a point anomaly detection
technique.

2. Model the structure of the data and then use this model to detect anoma-
lies. A generic technique in this category is the following. A model is
learned from training data that is able to predict the expected behavior
within a given context. If the observed behavior is significantly different
from the expected behavior, the corresponding data point is declared
anomalous.
A simple example of this generic technique is regression in which the
contextual attributes can be used to predict the behavioral attribute
by fitting a regression line (sometimes also called a trend line) on the
data.

Computational Complexity

The computational complexity of the training phase for techniques that use
models of the data is typically higher than that of techniques that reduce the
problem to point anomaly detection. However, structure model techniques
have a relatively fast testing phase, thanks to the fact that each data point
only needs to be compared to a single model.

Advantages and Disadvantages of Contextual Anomaly Detection
Techniques

A natural definition of an anomaly is the main advantage of contextual
anomaly detection techniques: in real life applications, data points tend to
be similar within a given context. Also, these techniques are able to de-
tect anomalies that may not be detected when using techniques that take a
global view of the data set (which is exactly what point anomaly detection
techniques do).

The main disadvantage is a very obvious one: contextual anomaly detection
techniques are only applicable when a context is present in the data set.

55

4.7 Contextual Anomaly Algorithms

In the context of this thesis, we are clearly dealing with sequential data with
contextual anomalies (with episode duration being the behavioral attribute
and all other attributes contextual). However, we cannot assume even inter-
arrival times, hence we need to look at techniques for event sequence data
only.

After searching for papers on contextual anomaly detection algorithms that
work on event sequences, two interesting papers stood out: the algorithm by
Vilalta/Ma and the Timeweaver algorithm.

There is a strong reason for not examining point anomaly algorithms in
more detail: to be able to reduce a contextual anomaly algorithm to a point
anomaly algorithm, it is necessary to consider each combination of contex-
tual attributes and then look at the behavior attributes for that contextual
attribute.
In the context of this thesis, the number of contextual attributes can grow
very large, which then makes reduction to point anomaly detection rather
inefficient.

4.7.1 Vilalta/Ma

Published in 2002, Vilalta & Ma [64] designed a system based on frequent
itemset mining to find patterns in historical data. More specifically, their
approach extracts temporal patterns from data to predict the occurrence of
rare target events. They make two assumptions:

1. that the events are being characterized by categorical attributes and
are occurring with uneven inter-arrival times, which makes this an al-
gorithm to work on event sequence data and not time-series data;

2. that the target events are highly infrequent.

They have developed an efficient algorithm for this particular problem set
that involves performing a search for all frequent eventsets (which are just
a special type of itemsets: instead of “items” they contain “events types”)
that precede the target events. The patterns that are found are combined
into a rule-based model for prediction.

Their approach differs from previous work that also uses the learning strat-
egy: most learning algorithms assume even class distributions and adopt

56

a discriminant-description strategy: they search for separators (discrimi-
nants) that best separate (discriminate) examples of different classes. Under
skewed distributions (which is the case here: the target events are highly
infrequent), separating the under-represented class is difficult. That is why
they have opted for a characteristic-description strategy: instead of searching
for separators, they search for common properties, and they do so by looking
at the events preceding a target event, to find common precursor events.

The Event Prediction Problem, Formally

The fundamental unit of study is an event. An event is of the form di = (ei, ti)
where ei indicates the event type and ti indicates the occurrence time.

Events belong in a sequence D =< d1, d2, . . . , dn >.

We are interested in predicting certain kinds of events that occur in sequence
D. We refer to this subset of events as target events : Dtarget ⊂ D. We
assume that the relative frequency of target events in comparison with all
events is low. Furthermore, target events do not represent a global property
of D (such as a trend or periodicity), but rather a local property.

The user must specify a target event type etarget (e.g. all fatal events), that
defines Dtarget as

Dtarget = {di ∈ D | ei = etarget}

The framework assumes a datasetD of size n , containing a sequence of events
(as defined before). Event types take on categorical values. We also assume
we have identified a set of events Dtarget ⊂ D with |Dtarget| = m� n = |D|.

The approach the Vilalta/Ma algorithm takes is to capture patterns that
characterize the conditions that precede each target event (i.e. where ei =
etarget). Specifically, the goal is to find out what types of events frequently
precede a target event, for the purpose of prediction. We look at those
preceding events within a time window of fixed size W before a target event
(as illustrated in figure 11).

Next, there is a whole series of definitions for an “eventset”, that will be used
in the remainder of this section:

• Matching. An eventset Z is a set of event types {ei}. Eventset Z
matches the set of events in window W if every event type ei ∈ Z is
found in W .

57

• Support. An eventset Z has support s in D if s% of all windows of size
W preceding target events are matched by Z. Eventset Z is frequent
if s is above a minimum user-defined threshold.

• Confidence. An eventset Z has confidence c in D if c% of all windows
of size W matched by Z precede a target event. Eventset Z is accurate
if c is above a minimum user-defined threshold.

• Specificity. An eventset Zi is said to be more specific than an eventset
Zj if Zj ⊂ Zi.

• Order. We impose a partial ordering over the space of eventsets. An
eventset Zi is marked as having a higher rank than eventset Zj, denoted
Zi � Zj if any of the following conditions is true:

1. The confidence of Zi is greater than that of Zj.

2. The confidence of Zi equals that of Zj, but the support of Zi is
greater than the support of Zj.

3. The confidence and support of Zi equal that of Zj, but Zi is more
specific than Zj.

Prediction Strategy

Their prediction strategy takes the following steps:

1. Characterize target events by looking at a fixed time window that pre-
cedes the target event and then finding the types of events that fre-
quently occur within that window. See figure 11 for an easy to under-
stand graphical explanation.

2. Validate that the event types found in step 1 uniquely characterize
target events, and that they do not often occur outside of the window
directly preceding the target event.

3. Combine the validated event types found in step 2 into rules, to end up
with a set of rules from which predictions can be made (i.e. a rule-based
prediction system).

Algorithmically, these steps take the following shape:

58

Figure 11: A plot of different event types versus time. Before each target
event, there is a time window. This allows us to identify frequent sets of
event types that act as indicators/precursors.
(Figure courtesy of [64].)

1. Frequent eventsets. This employs the standard Apriori [60] frequent
itemset mining algorithm over each window (but of course this could
be replaced with any frequent itemset mining algorithm, such as FP-
growth [61]) to find all frequent eventsets. E.g. in the case of figure
11, the eventset {a, b, d} would be found as the only frequent eventset
with a sufficiently high minimum support. Let’s call the collection of
frequent eventsets B, then B = {{a, b, d}}.
Note that because thanks to the use of eventsets, the order of events
does no longer matter, nor do the inter-arrival times.

2. Accurate eventsets. With frequent eventsets calculated, the next step
is filtering out those eventsets that do not meet minimum confidence.
Here, the general idea is to look at the number of times each of the fre-
quent eventsets occurs outside the time windows preceding the target
events. We capture all event types within each window that does not
overlap with the time windows that precede target events. We store
these eventsets in a new database of eventsets B′. This database con-
tains all eventsets that do not precede target events.
Now we can calculate the confidence for the frequent eventsets inB. Let
fZ(B) be the number of transactions in B that matches the eventset Z
and fZ(B′) that for B′. Then the confidence of the eventset Z is defined
as follows: confidence(Z,B,B′) = fz(B)/fz(B) + fz(B

′). Now we can
filter the frequent eventsets to only keep those with high confidence,
i.e. accurate eventsets. We store the result in V .

3. Building a rule-based model. For this, we first need to order the eventsets
in V depending on their rank. This allows us to find the most accurate

59

and specific rules first. Then, we iterate over V as long as it is not
empty. In each iteration, we select the next best eventset Zi and re-
moves all other eventsets Zj in V that are more general than Zi. This
effectively eliminates eventsets that refer to the same pattern as Zi but
that are unnecessarily general. A rule for Zi is generated, of the form
Zi → targetevent and is added to R. Then the next iteration begins.

The resulting set of rules R can be used for prediction.

4.7.2 Timeweaver

Timeweaver is a genetic algorithm, published in 1998 [63], that is able to learn
to predict rare events from sequences of events with categorical attributes.
It achieves this by identifying predictive temporal and sequential patterns.

Because this algorithm is based on genetic algorithms, and explaining that
too in full detail would lead us too far, this algorithm is only explained from
a high level perspective. The explanation should be sufficient to grok the
algorithm and put it into perspective next to the Vilalta/Ma algorithm (see
section 4.7.1).

Prediction Pattern

A prediction pattern is a sequence of events connected by ordering primitives
that define sequential or temporal constraints between consecutive events.
The three ordering primitives are defined below, with A, B, C and D repre-
senting individual events:

• Wildcard “*”. Matches any number of events, e.g. the prediction
pattern A*D matches ABCD

• Next “.”. Matches no events, e.g. the prediction pattern D.A.C. only
matches DAC.

• Unordered “|”. Allows events to occur in any order and is commutative,
e.g. the prediction pattern A|C|D will match ACD, ADC, CDA, and
so on.

The “|” primitive has the highest precedence. Each categorical attribute is
allowed to take on the “?” value, which matches any value. A prediction
pattern also has a pattern duration, of course represented by an integer.

60

Then a prediction pattern matches a sequence of events within an event
sequence if:

1. events within the event sequence are matched by the prediction pattern,
and;

2. ordering constraints in the prediction pattern are obeyed, and;

3. the events in the match occur within the pattern duration.

This prediction pattern language allows for flexible and noise-tolerant pre-
diction rules. For example: “if 3 (or more) A events and 4 (or more) B events
occur within an hour, then predict the target event”.
This language was designed to be simple yet useful. Extensions are possible
and would only require changes to timeweaver’s pattern-matching logic.

Algorithm

First, the population is initialized by creating prediction patterns containing
a single event, with the categorical attribute values set to the wildcard value
“?” 50% of the time and to a randomly selected categorical attribute value
the remaining 50% of the time.

The genetic algorithm then repeatedly does the following until a stopping
criterion is met: it selects 2 individuals from the population and applies the
mutation operator on both individuals (which randomly modifies a prediction
pattern: changing the categorical attribute values, ordering primitives or
pattern duration) or crossover (which may result in offspring of different
length from the parents, and thus may result in any size of pattern over
time).

Now, of course it is impossible to keep adding new prediction patterns: after
a certain amount of prediction patterns is being maintained, it becomes nec-
essary to replace existing ones with new ones (i.e. offspring from crossover).
We cannot use simple strategies such as FIFO here; it is necessary to balance
two opposing criteria: maintaining a diverse population (to keep all options
open) and focusing search in the most profitable areas. This can be achieved
by evaluating prediction patterns on exactly those properties: weighing each
pattern’s fitness versus its uniqueness when compared to the other patterns.

For more details, please consult [63].

61

5 OLAP: Data Cube

OLAP, and more specifically the data cube, is necessary to be
able to quickly answer queries about multidimensional data. The
data that needs to be presented to the user (and browsed, queried,
interacted with) in the context of web performance optimization
is very multidimensional, as is explained in section 9.2.

OLAP—short for On-Line Analytical Processing—is an approach designed
to be able to quickly answer queries about multidimensional data.

Some of the terminology and capabilities of OLAP systems can be found in
today’s spreadsheet applications, so it is in fact very likely that you’re already
(unwittingly) familiar with OLAP principles! OLAP systems are designed to
make interactive analysis of (multidimensional) data possible and typically
provide extensive visualization and summarization capabilities.

5.1 Multidimensional Data Representation

5.1.1 Fact Table

The starting point typically is a fact table: a tabular representation of the
data set.

63

The Iris data set

In table 1, a fact table of the multidimensional Iris data seta can
be found. It has been simplifiedb to serve as a simple, easy-to-
grasp example that will be used throughout the OLAP section to
demonstrate data transformations and manipulations.
For each of the 3 types of Irises that have been reviewed (Setosa,
Versicolour and Virginica), the petal length and petal width have
been analyzed. The lengths and widths that were found have
then been markedc as “low”, “medium” or “high”. 50 flowers of
each species were analyzed.
The table is split in three parts, one for each species (thus each
of these parts’ counts sums up to a total of 50).
In the remainder of this section, you will often see boxes like this
one (with a double frame). Each of those apply the explanations
in the preceding piece of text to the Iris data set. This should
help the reader gain a deeper understanding much faster.

aA famous data set from 1936 by the statistician R.A. Fisher; can be
obtained from the UCI Machine Learning Repository [26].

bTwo attributes have been omitted: sepal length and sepal width.
cMore accurately, the continuous attributes petal length and petal width

have been discretized. They were numbers in the range [0,∞[(in centimeters)
that have been discretized to the intervals [0, 0.75] → ”low”, [0.75, 1.75] →
”medium” and [1.75,∞[→ ”high”.

64

petal length petal width species type count

low low Setosa 46
low medium Setosa 2
low high Setosa 0

medium low Setosa 2
medium medium Setosa 0
medium high Setosa 0

high low Setosa 0
high medium Setosa 0
high high Setosa 0

low low Versicolour 0
low medium Versicolour 0
low high Versicolour 0

medium low Versicolour 0
medium medium Versicolour 43
medium high Versicolour 3

high low Versicolour 0
high medium Versicolour 2
high high Versicolour 2

low low Virginica 0
low medium Virginica 0
low high Virginica 0

medium low Virginica 0
medium medium Virginica 0
medium high Virginica 3

high low Virginica 0
high medium Virginica 3
high high Virginica 44

Table 1: The Iris data set: a table representation. Contains data on a number
of flowers having a particular combination of petal width, petal length and
species type.

5.1.2 Multidimensional Array

A key motivation for using a multidimensional viewpoint of data is the im-
portance of aggregating data from various perspectives. In sales, you might

65

want to find totals for a specific product per year and per location for exam-
ple. Or per day. Or for all products per location. Anything is possible.

To represent this input data as a multidimensional array, two steps are nec-
essary:

1. identification of the dimensions (or functional attributes); these must
be categorical attributes8

2. identification of the attribute that is the focus of the analysis (the
measure attribute)—this attribute is called the target quantity ; this
must be a quantitative attribute

Note that it is possible to have multiple target quantities (i.e. analyze multi-
ple quantitative attributes simultaneously). However, to keep the reasoning
straightforward, we will impose a limit of a single target quantity.
One could simply analyze each target quantity separately, or apply an arbi-
trary formula to combine multiple quantitative attributes into a single target
quantity.

The dimensions are categorical attributes. The values of an attribute serve as
the indices into the array for the dimension corresponding to that attribute;
the size of this dimension is equal to the number of different values for this
attribute.

8Obviously, any attribute can be transformed into a categorical attribute by means of
discretization. This is also what has been done for the example: the petal length and petal
width examples have been discretized.

66

Dimensions of a multidimensional array representation

In the case of the Iris data set (see table 1), there are a single
quantitative attribute (count) and 3 categorical attributes:

1. petal length

2. petal width

3. species type
Petal length and petal width rangea over the same 3 values:
“low”, “medium” and “high”. Hence 3 is the size of both the
petal length dimension and the petal width dimension.
There are 3 different species and thus the species type dimension
is also of size 3. Hence there are 3 × 3 × 3 indices, with 27
corresponding values.

aAs already mentioned before, petal length and petal width originally also
were quantitative attributes.

Each combination of attribute values (one for each attribute) defines a cell in
the multidimensional array; each cell contains the value of the target quan-
tity. The target attribute is a quantitative attribute because typically the
goal is to look at aggregate quantities (total, average, minimum, maximum,
standard deviation . . . ; the list can go on endlessly when adding domain-
specific functions for physics, financial analysis, etc.).

67

Multidimensional array representation

There are three categorical attributes: petal length, petal width
and species type. There is one quantitative attribute: the corre-
sponding count. Since there are three categorical attributes, this
can be represented in a three-dimensional array. See figure 12.
Note that this is not a data cube: it is merely a multidimensional
representation. It has 3 dimensions and therefore it looks like and
is a cube, but not a data cube. As long as not all aggregates are
there, it is not a data cube! (Note that there is for example no
aggregate count for all flowers by species type, amongst others.)
At least in OLAP context.
It may be called a data cube representation though: it is just a
way to represent a data set—no calculations are required. For
the result of the data cube operator, calculations are required.

Figure 12: A multidimensional representation of the Iris data
set—but not a data cube!
(Figure courtesy of [25].)

68

5.2 Slicing and Dicing

Slicing and dicing are both very straightforward. Slicing requires a specific
value to be specified for one or more dimensions. Dicing does not require a
single specific value to be chosen, but allows a range of attribute values to
be specified.

Slicing

In the context of the Iris data set example: the “front” of the
multidimensional representation (figure 12) is one of the three
displayed slices (table 2), the other two possible slices (tables 3
and 4) are the “deeper” slices, when looking at the multidimen-
sional representation from the same perspective.

Setosa petal width
high medium low

high 0 0 0
petal length medium 0 0 2

low 0 2 46

Table 2: Slice where the species “Setosa” has been selected.

Versicolour petal width
high medium low

high 2 2 0
petal length medium 3 43 0

low 0 0 0

Table 3: Slice where the species “Versicolour” has been selected.

Virginica petal width
high medium low

high 44 3 0
petal length medium 3 0 0

low 0 0 0

Table 4: Slice where the species “Virginica” has been selected.

69

Dicing

A possible dice for the Iris data set can be seen in table 5: it
is a subset of the “front” of the multidimensional representation
(figure 12).

Setosa petal width
high medium low

petal length low 0 2 46

Table 5: Slice where the species “Setosa” and petal length “low”
have been selected.

70

5.3 Data Cube

Before going into details about the data cube, let’s start with an example—it
will immediately be clear how a data cube can be used.

Figure 13: Annotated data cube.

5.3.1 Definition

As input, the data cube operator accepts a fact table T. T has n aggregation
attributes A1, . . . , An and 1 measure attribute M.

T (A1, . . . , An, M)

The aggregation function is applied to the measure attribute M, e.g. SUM().

The SQL syntax for the data cube operator is:

71

SELECT A1, ..., An, CSUM

FROM T

GROUP BY A1, ..., An, SUM(*) AS CSUM

WITH CUBE

Now, let us consider the semantics behind the above. Consider a subset of
the aggregation attributes S ⊆ {A1, . . . , An}. Define the query QS as :

SELECT Â1, ..., Ân, SUM(M)

FROM T

GROUP BY S

with

Âi =

{
Ai if Ai ∈ S

ALL otherwise

(In the above, each ALL value is in fact an alias for a set: the set of all values
of the attribute over which an aggregate is computed.)

Each QS defines aggregation over a specific combination of attributes. Then
the entire cube is the union of all these QS (i.e. with all possible subsets S), of
which there are 2n (i.e. there are 2n subsets S for n aggregation attributes).

If the cardinality of the n attributes are C1, C2, . . . , Cn (i.e. cardinality(Ai) =
Ci), then the cardinality of the resulting cube relation is

∏
(Ci+1). The extra

value in each attribute domain is the ALL value, which represents the set of
values over which the aggregate is computed.

5.4 Generalized constructs

The data cube (or just cube) operator generalizes the following constructs:

• histogram

• cross tabulation

• roll-up

• drill-down

72

5.4.1 Histogram

A histogram is a bar chart representing a frequency distribution; heights of
the bars represent observed frequencies.

Histogram

In figure 14, two sample histograms can be seen for the Iris data
set. The first is a 1D histogram (based on the petal width), the
second is a 2D histogram (based on petal width and petal length).
Petal length and width have not been discretized here (to “low”,
“medium” and “high”) as they were previously. Instead, they
were discretized into numerical ranges.

(a) 1D histogram (b) 2D histogram

Figure 14: Sample histograms for the Iris data set.
(Figures courtesy of [25].)

5.4.2 Cross tabulation

A cross tabulation (“cross tab”) displays the joint distribution of two or more
variables, along with the marginal totals. In the case of two variables, these
are the row and sum totals.
Note: a cross-tabulation over exactly two dimensions is also called a pivot.

73

Cross tabulation

Cross tabulation are slices, with added marginal totals. Table 6
is the cross-tabulation for the slice in table 2, as is table 7 the
cross tabulation for table 3 and table 8 the cross tabulation for
the slice in table 4.

Setosa petal width
high medium low total

high 0 0 0 0
petal length medium 0 0 2 2

low 0 2 46 48
total 0 2 48 50

Table 6: Cross tabulation of the slice where the species “Setosa”
has been selected.

Versicolour petal width
high medium low total

high 2 2 0 4
petal length medium 3 43 0 46

low 0 0 0 0
total 5 45 0 50

Table 7: Cross tabulation of the slice where the species “Versi-
colour” has been selected.

Virginica petal width
high medium low total

high 44 3 0 47
petal length medium 3 0 0 3

low 0 0 0 0
total 47 3 0 50

Table 8: Cross tabulation of the slice where the species “Vir-
ginica” has been selected.

74

5.4.3 Roll-up

A roll-up is the aggregation of values within a dimension—not across an
entire dimension!
Note: this requires that the attribute that is being rolled up can be considered
hierarchical in some sense, i.e., that it can be viewed with different levels of
granularity.

Roll-up

Since the Iris data set does not contain any hierarchical data, we
cannot apply roll-up to it. So, another example is presented.
For example, given sales data with entries for each date, we can
roll up (aggregate) the data across all dates in a month, resulting
in monthly sales totals. This is aggregation within a dimension;
aggregation across a dimension would have given us the total of
all sales ever recorded.

5.4.4 Drill-down

A drill-down can be considered the inverse of a roll-up: instead of viewing the
data “at a higher level”, the data will be viewed with more granularity—“at
a lower level”.
Note: this requires that the attribute that is being rolled up can be considered
hierarchical in some sense, i.e., that it can be viewed with different levels of
granularity.

Drill-down

Since the Iris data set does not contain any hierarchical data, we
cannot apply drill-down to it. So, another example is presented.
Continuing on the example for roll-up, a drill-down would for
example split monthly sales totals into daily sales totals. For
such drill-downs to be possible, it is of course a necessity that the
underlying data is sufficiently granular.

5.4.5 Generalization explained

The generalization of the aforementioned constructs may appear obvious. It
is simply another ’level’ of aggregation. Schematically, it could be described
as follows:

75

aggregate (≡ 0D data cube)
⊂

GROUP BY (≡ 1D data cube)
⊂

cross tab (≡ 2D data cube)
⊂

3D data cube
...

nD data cube

To ensure that you understand this, the following illustration makes it very
clear in a graphical manner:

Figure 15: The date cube is the n-dimensional generalization of more simple
aggregation functions.
(Figure courtesy of [65].)

76

5.5 The Data Cube Operator

Typically, data is stored in an RDBMS. To calculate the above constructs,
the GROUP BY operator is necessary. This operator partitions the relation
into disjoint tuple sets (based on one or more attributes that are common
amongst the tuples in each tuple set) and then aggregates over each set. In
other words, using the GROUP BY construct allows a table to be created of
many aggregate values, indexed by a set of attributes.

However, there are some problems with using the GROUP BY operator [65].

Histogram

The standard SQL GROUP BY operator does not allow for easy construction
of histograms (aggregation over computed categories), because it does not
allow functions to be used in the GROUP BY clause9.

But that doesn’t mean it can’t be expressed at all: SQL is Turing complete
and therefore it can be expressed. It just can’t be expressed very elegantly
or succinctly. A SQL statement of the type GROUP BY F() is disallowed, but
one can still achieve a group by on a function by applying the function in a
subquery and performing the group by over the result.

For example, it is desirable to be able to write:

SELECT avgPetalLength , SpeciesType
FROM I r i s
GROUP BY AVG(PetalLength) AS avgPetalLength ,

SpeciesType

But instead, we’re forced to use a subquery, which is less concise:

SELECT avgPetalLength , SpeciesType
FROM (SELECT AVG(PetalLength)

AS avgPetalLength ,
Spec i e s type

FROM I r i s) AS sub
GROUP BY avgPetalLength ,

SpeciesType

9Not in SQL-92, which was available at the time of writing [65] (SQL3 was in develop-
ment at the time of writing [65] and was to later become the SQL:1999 standard) and still
not in SQL:2008 [66], which is the latest SQL standard at the time of writing this text.

77

Roll-up & drill-down

To calculate a roll-up over n dimensions requires n unions: n group by SQL
statements need to be unioned together—1 per dimension that is being rolled
up.

The drill-down case is analogous to that for roll-up.

Since the Iris data set does not contain any hierarchical data, we
cannot apply drill-down to it. So, another example is presented.

Suppose car sales data is being collected in a Car(Model, Year,

Color, Sales) table. Then it is likely that one would like
to create a roll up of Sales by Model by Year by Color, i.e.
ascending up the “Model-Year-Color” hierarchy, to decrease
granularity at each step.
This would require the union of a group by on Model, then a
group by on Model, Year and finally a group by on Model, Year,
Color. We now have a roll-up over 3 dimensions, which required
the union of 3 group by statements.

The end result looks like this:

Model Year Color Sales

Chevy 1994 white 40
Chevy 1994 black 50
Chevy 1995 white 115
Chevy 1995 black 85

Chevy 1994 ALL 90
Chevy 1995 ALL 200

Chevy ALL ALL 290

Table 9: Sample roll-up result. Granularity decreases from top
to bottom, as we roll up by more attributes in the hierarchy.

Cross tabulation

Roll-ups are asymmetric, cross tabulations are symmetric and require even
more unions: 2n unions!

78

This example continues on the roll-up example above.

Suppose we wanted to show the cross tabulation of the sales for
a specific model, with the range of values for Year as columns
and the range of values for Color as the rows. Then we can reuse
the results for the roll-up example. But for roll-up, we didn’t
aggregate sales by color—this is why roll-up is called asymmetric.

So we lack the rows that aggregate sales by Color. These rows
are generated by one additional unioned in group by statement,
and contain:

Model Year Color Sales

Chevy ALL white 155
Chevy ALL black 135

Table 10: Rows generated by aggregating by Color.

Combined, we now have a symmetric aggregation result, which
required 4 = 22 unioned group by statements (3 from the roll-up
example plus 1 additional group by statement from this example),
while we’re building a 2D cross-tabulation (on Year and Color).
Molding the data into a cleaner representation like previous cross
tabulations gives us:

Chevy Year
1994 1995 total (ALL)

black 50 85 135
Color white 10 75 85

total (ALL) 60 160 220

Table 11: Cross tabulation of Model by Year and Color.

Solution to daunting SQL: the data cube operator

As should be clear by now, the data cube operator was not absolutely neces-
sary in the strictest sense: anything that can be achieved with the data cube
operator can be achieved without it. But thanks to the data cube operator,

79

it is no longer necessary to apply the same patterns repeatedly: the necessary
SQL becomes much less daunting (e.g. a 6D cross tabulation would require
a 26 = 64 way union).
And because the exact logic behind it is now abstracted away in the SQL
language syntax, it paved the way for possible future optimizations.

To support the data cube operator, SQL’s SELECT-GROUP-BY-HAVING syntax
was extended to support histograms, decorations10 and the CUBE operator
(as well as the ROLLUP operator11).
Microsoft pioneered this in their SQL Server RDBMS product [65].

5.6 Elaborate data cube example

Continuing with the Iris data set (see table 1), a sample query that utilizes
the newly introduced data cube operator is listed below:

SELECT PetalLength , PetalWidth , SpeciesType , COUNT (*) AS CCount

FROM Iris

GROUP BY PetalLength ,

PetalWidth ,

SpeciesType

WITH CUBE;

For the semantics behind this query, see the definition in section 5.3.1.

It might be helpful to give you a deeper understanding of ALL values (again,
see the definition), in the context of this example.
Each ALL value is in fact an alias for a set: the set over which the aggregate
is computed. In this example, these respective sets are:

• ALL(speciesType) = {’Setosa ’, ’Versicolour ’, ’Virginica ’}

• ALL(petalLength) = {’low’, ’medium ’, ’high’}

• ALL(petalWidth) = {’low’, ’medium ’, ’high’}

Thinking of the ALL value as an alias of these sets, makes it easier to un-
derstand and is how it operates internally. The ALL string really is just for
display.

10Decorations are columns that do not appear in the GROUP BY list—and that are
therefore not allowed to be projected (be in the SELECT list) in traditional SQL—but that
are functionally dependent on the grouping columns. See [65] for more details.

11Modern RDBMSes such as MySQL 5.0 support this [67].

80

Data cube of 3D data

In this section, we consider all three categorical attributes of table 1: Petal
Length, Petal Width and Species Type. Three categorical attributes implies
3D data and therefore we will need 1 + (23− 1) = 1 + 7 = 8 UNIONed queries.
This is the case:

(

-- Standard GROUP BY.

SELECT PetalLength , PetalWidth , SpeciesType , COUNT (*)

FROM Iris

GROUP BY PetalLength , PetalWidth , SpeciesType

)

UNION

(

-- Super -aggregate of SpeciesType.

SELECT PetalLength , PetalWidth , ALL , COUNT (*)

FROM Iris

GROUP BY PetalLength , PetalWidth

)

UNION

(

-- Super -aggregate of PetalWidth.

SELECT PetalLength , ALL , SpeciesType , COUNT (*)

FROM Iris

GROUP BY PetalLength , SpeciesType

)

UNION

(

-- Super -aggregate on PetalLength.

SELECT ALL , PetalWidth , SpeciesType , COUNT (*)

FROM Iris

GROUP BY PetalWidth , SpeciesType

)

UNION

(

-- Super -aggregate of PetalWidth and Speciestype.

SELECT PetalLength , ALL , ALL COUNT (*)

FROM Iris

GROUP BY PetalLength

)

UNION

(

81

-- Super -aggregate of PetalLength and PetalWidth.

SELECT ALL , ALL , SpeciesType , COUNT (*)

FROM Iris

GROUP BY SpeciesType

)

UNION

(

-- Super -aggregate of PetalLength and Speciestype.

SELECT ALL , PetalWidth , ALL , COUNT (*)

FROM Iris

GROUP BY PetalWidth

)

UNION

(

-- Super -aggregate of PetalLength , PetalWidth and Speciestype.

SELECT ALL , ALL , ALL COUNT (*)

FROM Iris

)

Moreover, all 3 categorical attributes may assume 3 different values (“low”,
“medium” and “high” for Petal Length and Petal Width, “Setosa”, “Versi-
colour” and “Virginica” for Species Type), thus C1 = C2 = C3 = 3. This
implies that the cardinality of the resulting data cube should be (C1 + 1)×
(C2 + 1) + (C3 + 1) = 4× 4× 4 = 64.

This can also be checked by examining the table below (in which the results
of the data cube operator are listed): there are 27+(3×9)+(3×3)+1 = 64
rows, therefore its cardinality is 64.

Petal Length Petal Width Species Type Count

The input data: no aggregation (27)
low low Setosa 46
low medium Setosa 2
low high Setosa 0

medium low Setosa 2
medium medium Setosa 0
medium high Setosa 0

high low Setosa 0
high medium Setosa 0
high high Setosa 0

82

Petal Length Petal Width Species Type Count

low low Versicolour 0
low medium Versicolour 0
low high Versicolour 0

medium low Versicolour 0
medium medium Versicolour 43
medium high Versicolour 3

high low Versicolour 0
high medium Versicolour 2
high high Versicolour 2

low low Virginica 0
low medium Virginica 0
low high Virginica 0

medium low Virginica 0
medium medium Virginica 0
medium high Virginica 3

high low Virginica 0
high medium Virginica 3
high high Virginica 44

By Petal Length and Petal Width (9)
low low ALL 46
low medium ALL 2
low high ALL 0

medium low ALL 2
medium medium ALL 43
medium high ALL 6

high low ALL 0
high medium ALL 5
high high ALL 46

By Petal Length and Species Type (9)
low ALL Setosa 48

medium ALL Setosa 2
high ALL Setosa 0
low ALL Versicolour 0

medium ALL Versicolour 46
high ALL Versicolour 4
low ALL Virginica 0

83

Petal Length Petal Width Species Type Count

medium ALL Virginica 3
high ALL Virginica 47

By Petal Width and Species Type (9)
ALL low Setosa 48
ALL medium Setosa 2
ALL high Setosa 0
ALL low Versicolour 0
ALL medium Versicolour 45
ALL high Versicolour 5
ALL low Virginica 0
ALL medium Virginica 3
ALL high Virginica 47

By Petal Length (3)
low ALL ALL 48

medium ALL ALL 51
high ALL ALL 51

By Petal Width (3)
ALL low ALL 48
ALL medium ALL 50
ALL high ALL 52

By Species Type (3)
ALL ALL Setosa 50
ALL ALL Versicolour 50
ALL ALL Virginica 50

Total (1)
ALL ALL ALL 150

84

5.7 Performance

One key demand of OLAP applications is that queries be answered quickly.
This is of course not a demand that is unique to OLAP: it is very rare that
it is a requirement for a database or any other software to respond slowly.
But OLAP’s requirements are fairly stringent.
Fortunately, the multidimensional data model of OLAP is structured enough
to allow this key demand to be approached.

If there is one key property to OLAP or multidimensional data analysis,
then it is the ability to simultaneously aggregate across many dimensions.
As we have discussed before (see section 5.5) and observed in full detail (see
section 5.6), this translates to many simultaneous GROUP BY statements in
SQL, which can result in a performance bottleneck.

More efficient schemes to perform these calculations have been researched
by the University of Wisconsin-Madison [68], amongst others. Initially, they
have focused on efficient algorithms to compute the cube operator, using the
standard RDMBS techniques of sorting and hashing. As always, precom-
puting frequently used data can be used to speed up computer programs.
In terms of multidimensional data analysis, aggregates on some subsets of
dimensions can be precomputed. However, it is impossible to precompute
everything, and we may end up precomputing unneeded aggregates. And
because of the hierarchical nature (i.e. one subset of dimensions may be a
subset of another subset), it is possible that the increase in required storage
space may be unreasonable.

5.7.1 Efficient Cubing

The key to efficient cubing of relational tables is understanding how the
cuboids12 are related to each other. Then, one can exploit these relation-
ships to minimize the number of calculations, and, more importantly (as
virtually always for database systems): less I/O. [68] suggests an approach
based on a hierarchical structure. They explore a class of sorting-based meth-
ods that attempt to minimize the number sorting steps by overlapping the
computations of the various cuboids (and hence minimize the number of disk
I/Os). This approach always performs significantly better than the proto-
type method referenced in section 5.5, which simply computes all required
GROUP BY statements in sequence.

12Each combination of aggregates is called a cuboid, and all these cuboids together form
the cube.

85

5.7.2 Precomputing for Speed: Storage Explosion

The more aggregates that are precomputed, the faster queries can be an-
swered. However, it is difficult to say in advance how much space (storage)
will be required for a certain amount of precomputation. There are different
methods (discussed in [68]) to estimate this:

1. It is assumed that the data is uniformly distributed. This assumption
allows for a mathematical approximation of the number of tuples that
will appear in the result of the cube computation. This is simple statis-
tics:

If r elements are chosen uniformly and at random from a set of
n elements, the expected number of distinct elements obtained is
n− n(1− 1/n)r.
— Feller in [69], page 241

This can then be used to calculate the upper bound on the size of the
cube. n is the product of the distinct number of values of all attributes
on which is being grouped (i.e. the number of all possible different
combinations of values) and r the number of tuples in the relation.

2. The second method uses a simple sampling-based algorithm: take a
random subset of the table, compute the cube on that subset. Then
estimate the size of the actual cube by linearly scaling the size of the
cube of the sample by the data size

sample size
ratio. Clearly, if the random sam-

ple is biased, then our estimate will be skewed.
The potential advantage over the first method (based on the uniform
distribution assumption) is that this method examines a statistical sub-
set, instead of just relying on cardinalities.

3. While the first two methods are simple applications of well-known
statistics methods, the third tries to exploit the nature of the process
that is being applied—essentially, data is being grouped according to
the distinct values within the dimensions. This method therefore esti-
mates the number of tuples in each grouping by estimating the number
of distinct values in each particular grouping.
A suitable probabilistic algorithm is [70]: it counts the number of dis-
tinct values in a multi-set, and makes the estimate after a single pass
through the database, using only a fixed amount of memory. Hence
this algorithm is a good starting point (single pass and fixed amount
of memory are very desirable properties).

86

When comparing these three methods, the first method only works well
when the data is approximately uniformly distributed (unsurprisingly), the
sampling-based method is strongly dependent on the number of duplicates,
and the probabilistic method performs very well under various degrees of
skew. Hence the latter provides the most reliable, accurate and predictable
estimate of the three considered algorithms.

5.7.3 The Impact of the Data Structure

While OLAP is the ’container term’, there are actually many variants; in-
cluding ROLAP (relational OLAP) and MOLAP (multidimensional OLAP).
MOLAP stores the data in an optimized multidimensional array, whereas
ROLAP stores the data in a relational database. Both have their advantages
and disadvantages

A noteworthy remark: in [68], they found that it was surprisingly efficient
to take the data set from a table in a relational database, convert this into a
multidimensional array, cube the array and store it back in a database—this
has been found to be more efficient than cubing the table directly!

5.7.4 Conclusion

Clearly, there is much more to the cube operator than meets the eye: a
straightforward implementation is likely unable to attain the desired perfor-
mance; optimizations on multiple levels are necessary. Precomputing parts
seems an obvious optimization, but may require too much storage; estimating
how much storage this will require is also not trivial. The data structures used
should be carefully selected, since the performance impact can be tremen-
dous. And, while complex, attempts to minimize overlapping computations
can also help significantly.

87

5.8 Performance for range-sum queries and updates

For many applications (businesses), batch updates that are executed overnight
are sufficient. However, in many cases, it is a necessity to have more frequent
updates:

• For decision support and stock trading applications, instantaneous up-
dates are crucial.

• OLAP implies interactive data analysis. Interactivity requires fast up-
dates (and queries!).

• Batch updates may have a low average cost per update, but performing
the complete batch may take a considerable amount of time. For com-
panies that can shut down every night, this might not be a problem,
but for multinational companies, this poses a problem: at all times,
access to the data is required somewhere around the world.

So, the ability to perform more frequent updates would enable other types
of applications. As a side-effect, applications that don’t really need it auto-
matically get greater flexibility and 24 hour availability.

In the context of WPO analytics, there are two reasons for requiring frequent
updates:

1. OLAP’s ability to do interactive data analysis is desirable, and inter-
activity requires fast queries and updates (as indicated previously).

2. It’s very desirable to be able to analyze the live performance, i.e. the
performance of the website as it is being experienced by visitors right
now. For this, fast updates clearly are a requirement.

Discussed techniques

In the remainder of this section, three techniques are discussed:

1. Prefix Sum: this is an example of a technique that allows for fast range-
sum queries that unfortunately can have very slow updates. It is very
trivial, anybody with basic math skills could come up with it.

2. Relative Prefix Sum: this method is essentially the same as Prefix Sum,
but stores its data in a smarter manner, to speed up updates.

88

3. Dynamic Data Cube: the third and last method is slightly inspired by
(Relative) Prefix Sum but has as goal to have sub-linear performance,
both for queries and updates! It is also far more efficient storage-wise:
empty regions simply are not stored at all, whereas they would need
to be created for the Prefix Sum and Relative Prefix Sum methods.
It achieves all this by using a hierarchical (tree) structure, with each
deeper level accessing more granular data.

All are applicable only to range-sum queries, which is a specific type of query,
but a very common one.

Finally, all of the techniques below rely on precomputation and therefore
section 5.7.2 should be kept into account as well.

5.8.1 Prefix Sum

The essential idea of the Prefix Sum method is to precompute many prefix
sums of the data cube, which can then be used to answer any range-sum
query in constant time. The downside is a large update cost—in the worst
case, an array needs to be rebuilt that has the same size as the data cube
itself.

One could describe the prefix array by the following (very simple) formula,
with P the prefix array and A the original array:

P [i, j] =
∑

0≤k≤i; 0≤l≤j

A[k, l]

Because of the nature of a prefix sum, particular updates have the potential
to cause enormous cascading updates. This becomes instantly obvious when
shown the data that the Prefix Sum method stores. Therefore, an example
has been included: please see figure 16.
For example, when cell A[1, 3] would be modified, almost entire P would
need recalculating.

Discussing all details would lead us to far—if interested, it is recommended
to consult the original paper [72]. The worst case update cost is O(nd).

5.8.2 Relative Prefix Sum

This method provides constant time queries with reduced update complexity
(when compared to the Prefix Sum technique explained in [72] on which

89

Figure 16: The original array (A) on the left and the cumulative array used
for the Prefix Sum method (P) on the right.
(Figure courtesy of [71].)

it builds). Therefore this method is more suitable for applications where
constant time queries are a necessity but updates are more frequent than the
Prefix Sum method allows.

The essence of the Relative Prefix Sum approach is to limit the cascading
updates that result in poor update performance. It achieves this by parti-
tioning the array that is to be updated into fixed size regions called overlay
boxes, these are of equal size: k in each dimension. Thus each overlay box
contains kd cells, with d the number of dimensions. The explanations below
are for the 2D case, because that is easier to explain and visualize, but the
same techniques can be applied to arrays of any number of dimensions.

The anchor cell is the “upper left” cell of each overlay box.

For each overlay box, there is an overlay array and a relative-prefix array.

Overlay array

The overlay array (OL) stores information on the sums of the “preceding”
regions. By “preceding”, those regions that are more to the left and to the
top in a typical 2D array are meant, that is, the regions on which it depends
for its range sums.

90

In the two-dimensional example in figure 17, the cells in the top
row and leftmost column contain the sums of the values in the
corresponding shaded cells: those overlay cells aggregate the cor-
responding shaded cells. The other, empty cells in the overlay
array are not needed and would therefore not be stored in an
actual implementation.

Figure 17: Calculation of overlay array values as the sum of the
cells in the shaded cells.
(Figure courtesy of [71].)

More formally, the overlay array OL for the overlay box B, anchored at
(i.e. with its anchor cell at) (b1, . . . , bd) aggregates kd overlay cells O =
(o1, . . . , oi, . . . , od), which are those cells that satisfy for each dimension i:
bi ≤ oi ≤ bi + k, namely all cells in the overlay box B. Of those cells, only
kd− (k− 1)d are used, namely those in the top row and the leftmost column.
Then each cell in the overlay array is defined as follows:

OL[o1, . . . , od] = (

u1∑
a1=l1

. . .

ud∑
ad=ld

A[a1, . . . , ad])

−(

v1∑
a1=m1

. . .

vd∑
ad=md

A[a1, . . . , ad])

with for all dimensions i:

if oi = bi:

li = 0

ui = bi

mi = bi

vi = bi

, and if oi > bi:

li = bi + 1

ui = oi

mi = bi + 1

vi = oi

The oi = bi case calculates the value for the anchor cell. The oi > bi case
calculates the other cells with values: those in the top row and the leftmost
column.

91

Relative-prefix array

The relative-prefix array (RP) stores information on the relative prefix sums
within each overlay box. Each region in RP contains prefix sums that are
relative to the to the region enclosed by the box, that is, it is independent of
other regions.

More formally, the relative-prefix array RP for the overlay box B, anchored
at (i.e. with its anchor cell at) (b1, . . . , bd) , each cell in the relative-prefix
array is defined as follows:

RP [i1, . . . , id] =

b1+k∑
a1=b1

. . .

bd+k∑
ad=bd

A[a1, . . . , ad]

Combining the overlay array and relative-prefix arrays

By combining the information in both components (OL and RP), prefix sums
can be constructed on the fly.

This too, can be made more clear through the use of figures. First look again
at the right-hand side of figure 16. Then look at figure 18, which contains
an example of the OL and RP components for figure 16.
It is clear that each cell in the array on the right-hand side of figure 16 can
be calculated from the OL and RP components by adding the corresponding
values stored in the OL and the RP .

92

Figure 18: The overlay array (OL) on the left and the relative prefix array
(RP) on the right. The overlay boxes are drawn in thick lines for reference.
(Figure courtesy of [71].)

To calculate SUM(A[0, 0] : A[8, 7]), we must add OL[6, 6] (the
anchor cell), OL[8, 6] (because our target cell is in column 8
and the anchor cell was in column 6, we need the value in the
overlay array for column 8 as well), OL[6, 7] (analogously to the
explanation for OL[8, 6]) and RP [8, 7] (since that is our target
cell). The result is 179 + 40 + 14 + 23 = 256.

Other examples:

SUM(A[0, 0] : A[4, 0]) = OL[3, 0] +OL[4, 0] +RP [4, 0]

= 9 + 0 + 4 = 13

SUM(A[0, 0] : A[3, 5]) = OL[3, 3] +OL[3, 5] +RP [3, 5]

= 46 + 15 + 14 = 75

SUM(A[0, 0] : A[6, 3]) = OL[6, 3] +RP [6, 3]

= 97 + 2 = 99

93

Figure 19: Effects of an update to the cell with coordinates (1, 5)—marked
with an asterisk on the left.
(Figure courtesy of [71].)

Update performance

The goal of the Relative Prefix Sum method is to reduce the amount of
update cascade. Now that has been demonstrated how this method works, it
is time to look at the update performance. Suppose that A[1, 5] is updated
from the value 3 to the value 5.

Since the OL contains the sums of the “preceding” regions, all values to the
right and those in the first row below need to be updated. In the running
example, these are cells OL[3, 5] and OL[6, 5] to the right and cells OL[1, 6],
OL[2, 6], OL[3.6] and OL6, 6] in the row below. This is demonstrated in
figure 19. And since the RP contains relative prefix sums only for cells
within the same overlay box, only cells RP [1, 5] and RP [2, 5] need to be
updated (again, see figure 19).

Discussing all details would again lead us to far, for a detailed analysis it
is recommended to read [71], but here it suffices to say that in the worst
case, (n

k
+ k − 2)d cells need to be updated (with d the dimensionality, n

the number of possible attribute values and k the length of the overlay box
in each dimension). The worst case update cost has been limited to O(n

d
2),

which is significantly less than for the Prefix Sum method, since the exponent
is only half as large (see section 5.8.1).

94

5.8.3 The Dynamic Data Cube

Like the Relative Prefix Sum method, this method also uses overlay boxes.
But it uses multiple levels of overlay boxes, arranged in a hierarchy (more
specifically: a tree structure). Through this particular structure (that will be
explained more in-depth later on), the Dynamic Data Cube method is able to
provide sub-linear performance (O(logd n), with d again the dimensionality)
for both range sum queries and updates on the data cube.

Overlay Boxes

The overlay boxes are similar to the ones used in the Relative Prefix Sum
method, but they differ in the values they store, and in the number of overlay
boxes.

The values that they store can best be explained through the help of a
figure: see figure 20. Each box stores—just like the Relative Prefix Sum
method—kd − (k − 1)d values (i.e. the leaf level stores 1 value, the level
above that stores 4−1 = 3 values, etc.); these values provide sums of regions
within the overlay box. E.g., y1 contains the sum of all the values of that row.
Also, because sums of regions within the overlay box are stored, y2 includes
the value of y1, etc. S is the cell that contains the subtotal for that overlay
box.

Most importantly, each overlay box is independent from the other ones at the
same level in the hierarchy. This is different from the Relative Prefix Sum
method, where each overlay box also contains the values for the “preceding”
regions.
This also explains why the Dynamic Data Cube method uses the bottom row
and rightmost column: it contains the subtotal for each region. Whereas the
Relative Prefix Sum method uses the top row and leftmost column to store
totals for the “preceding” regions in its overlay arrays and then uses the
relative-prefix array to be able to calculate the other cells in that overlay
box.

Construction

As stated before, overlay boxes are organized in a tree structure that recur-
sively partitions the array. This tree structure is the reason that the number
of overlay boxes differs from that of the Relative Prefix Sum method.
The root node of the tree contains the complete range of the array, in overlay

95

Figure 20: Partitioning of an array into overlay boxes and calculation of
overlay values..
(Figure courtesy of [71].)

boxes of size k = n
2
. Each overlay box is again divided in half (so now k = n

4
),

and so on. This recursive partitioning continues until the leaf level, where
k = 1 and each overlay box contains a single cell. At that point, the leaf
level contains the values stored in the original array.
For a graphical explanation, see the three different levels, from root to leaf
level, as illustrated in figure 21.

Because the overlay boxes are stored in special structures, sub-linear query
and update times can be guaranteed. For two-dimensional overlays (d =
2), overlay boxes are not stored in arrays, but in a specialized hierarchical
structure with an access and update cost of O(log n); for details on that see
[73]. When the data cubes have a higher dimension (d > 2), the overlay box
values of a d-dimensional data cube can be stored as (d−1)-dimensional data
cubes in a recursive manner13—the recursion of course stops for d = 2.

Queries & Updates

The range sum for any query can be calculated by retrieving only overlay
box values. The query begins at the root node of the tree and includes every
overlay box that is “covered in every dimension” by the coordinates of the
cell whose range sum we’re calculating (i.e. if that cell’s index is greater
than or equal to the overlay box’ index in every dimension), i.e. the included
overlay boxes contribute their subtotals to the sum. If the cell intersects the
overlay box, then the box contributes the corresponding overlay value (a row

13The surfaces containing the overlay values of a d-dimensional overlay box are (d− 1)-
dimensional.

96

Figure 21: Dynamic Data Cube: all levels of the tree.
(Figure courtesy of [71].)

sum value in a 2D data cube, such as y2 in figure 20). Then, we go to a
deeper level in the tree until we reach the leaf level.
Since overlay boxes at the same tree level do not intersect, at most one child
will be traversed down. The same algorithm is applied again.
Thanks to this recursive nature, less values need to be retrieved, resulting in
an overall query cost of O(logd n)—for details see again [73].
The same descent down the tree must be made when performing an update
instead of a request, resulting in a worst case update cost that is identical to
the overall query cost. Again, see [73] for details.

Dynamic Growth

Neither the Prefix Sum nor the Relative Prefix Sum methods carry optimiza-
tions to limit growth of the data cube. Instead, they assume that the size
of each dimension is known a priori, or simply that size is not an issue. For
some cases, it is more convenient (and space efficient) to grow the size of the
data cube dynamically, just enough to suit the size of the data. For example,
the number of possible values of an attribute could be large, but the number
of actual different values that are taken is low.

The Prefix Sum and Relative Prefix Sum methods would need to grow new
rows (for lack of a better term in >3D; more accurately: expansion in a
specific dimension) for even a single cell in a previously non-existing area—see
figure 22 for an example. The Dynamic Data Cube, on the other hand, could
just grow into the required direction, affecting just one overlay box at each
tree level.

This makes the Dynamic Data Cube a natural fit for data that contains large

97

Figure 22: Growth of a Dynamic Data Cube—shaded areas don’t store val-
ues.
(Figure courtesy of [71].)

non-populated regions: where there is no data, the overlay boxes will simply
not be created. In other words: the Dynamic Data Cube avoids the storage
of empty regions, unlike the Prefix Sum and Relative Prefix Sum methods.

98

5.9 Stream Cube: Data Cube for Data Streams

In the preceding subsections, we have discussed the data cube at length. But
the input data (over which the data cube was being calculated) was always
a static data set. In this subsection, we will discuss how to apply the data
cube operator to a dynamic data set: a data stream.

In this section, we will consider the design requirements and look into the
various design aspects that are proposed by the study [74] on which this
section is based.

5.9.1 Design Requirements

To design an efficient and scalable stream data cube that can provide fast
online multidimensional stream data analysis, we formulate some design re-
quirements.

1. Since a data stream is possibly infinite, and storage space is never
infinite, we must ensure that the stream data cube uses a finite amount
of storage. It should stay relatively stable in size over time.
By using a tilted time frame, the most distant time is compressed very
strongly and data beyond that most distant time is simply removed. In
other words: only a subset of the data stream (a window of the most
recent time) is considered, and the most recent part of that subset has
more detail than the most distant part of that subset.

2. As a data cube must be incrementally updatable (see section 5.8), a
stream data cube must be as well. Since the input data streams are
possibly infinite, it is impossible to reconstruct the stream data cube
from scratch: the stream data cube must be incrementally updatable.

3. The time required for an incremental update of a stream data cube
must be proportional to the size of the portion of the base cuboid (in
our context: the minimal interesting layer) that is being updated. Of
course, it is desirable that there is a linear relation between the time
required to update the portion of the base cuboid and the size of that
portion of the base cuboid.

4. Fast online drilling along any single dimension or along a combination
of a small number of dimensions is also a requirement, to allow for
efficient analysis of the data by an analyst. Materialization of some
portion of the data cube will facilitate that.

99

Note: an iceberg data cube is not an eligible candidate architecture because
it does not allow for incremental updates.
(An iceberg data cube only stores the cells in the data cube that exceed
a certain threshold—like icebergs exceed the sea surface. Exactly because
they only store the cells exceeding a certain threshold, they are not capable
of incremental updates: if an update would make a previously not-threshold-
exceeding cell exceed the threshold after some time, it would require the
entire iceberg data cube to be recalculated, because no record for that newly
threshold-exceeding cell existed previously.)

5.9.2 Architecture

The stream cube algorithm [74] combines three techniques, to allow for effi-
cient computation of a data cube over a stream.

1. A tilted time frame model (already discussed in section 3.2.1) is used as
a multi-resolution model, to provide data at different granularities over
time (more recent data is stored in a finer resolution, the most distant
data is stored in the most coarse resolution). This design allows for
significant savings in storage requirements.

2. Remember that a data cube consists of cuboids, which are the different
combinations of aggregates (also see section 5.7.1).
Now, to build a static data cube (i.e. one that does not represent a
data stream), it may make sense to materialize the entire data cube,
i.e. all cuboids. But in the case of a data stream, which is possibly
infinite, this may be impossible due to enormous space requirements
(as has been discussed at length in section 3). Even with a tilted time
frame, the cost to store a precomputed cube may be prohibitive.
Therefore, in the stream cube architecture, we choose to maintain (com-
pute and store) two critical layers14:

(a) the observation layer (o-layer): the layer that an analyst would
like to interpret to find exceptions and drill down from there to
lower layers (to see the details for the exceptions)

(b) the minimal interesting layer (m-layer): the minimal layer that
an analyst would want to examine (because it’s not practical, nor
cost-effective to examine the smallest detail of the data stream)

14’layer’ is used as a synonym for ’cuboid’—this transforms the concept from n dimen-
sions (which is very abstract) to 3 dimensions (which is very tangible), and thus makes it
more easily understandable.

100

3. Because we materialize the cube at only two critical layers (the o-layer
and the m-layer), this allows us to choose how to compute the cuboids
between these two layers. The study proposes the popular-path cubing
method, which rolls up the cuboids from the m-layer to the o-layer, by
following the most popular drilling path (as predefined). This means
that only the layers along this path will be materialized, and other lay-
ers will be computed on-the-fly when needed.
The study’s performance analysis shows that this method works fairly
well: they report that this approach has “a reasonable trade-off be-
tween space, computation time, and flexibility, and has both quick
aggregation time and exception detection time”.

An interesting remark is that in the study that introduces the stream cube
architecture [74], the guiding scenario is very similar to the scenario of this
master thesis: they build a stream cube over a stream of “Web clicks”,
which also includes the URL, user IP address, and so on (see section 9.2 for
comparison—you’ll see that this is indeed very similar).
They even try to find similar patterns! For example, they try to find patterns
like “the Web clicking traffic in North America on sports in the last 15
minutes is 40% higher than the last 24 hours’ average” (compare with the
provided sample patterns in section 9.1.2).

The study’s goal is closely aligned with ours, but is obviously more generic:

Our task is to support efficient, high-level, on-line multi-dimensional
analysis of such data streams in order to find unusual (excep-
tional) changes of trends, according to users’ interest, based on
multi-dimensional numerical measures.

Now we will look into the major design aspects.

Tilted Time Frame

The tilted time frame concept has been explained at length in section 3.2.1—it’s
not useful to repeat the same information, so please read that section again
if you have skipped that part or forgotten the details.

Critical Layers

The concept of critical layers will now be explained in a more practical man-
ner based on figure 23. This figure continues on the previously mentioned

101

Figure 23: The two critical layers in the stream cube architecture, applied
to an example.
(Figure courtesy of [74].)

“Web click stream” example, in which the primitive stream data layer con-
sists of (individual-user, URL, second) tuples.

As explained before, two critical layers will be materialized (the m-layer and
the o-layer), as well as the popular paths in between them. Layers below
the m-layer (i.e. with more detail) will not be computed, since the m-layer is
defined as the minimal interesting layer and thus everything below is marked
as not interesting enough to analyze.
Looking at the figure, it is easy to see that all dimensions in the triples
have been rolled up (aggregated within their dimension): individual users
are rolled up to user groups, URLs to URL groups and seconds to minutes.
Thus, the m-layer consists of (user group, URL group, minute) tuples.

Similarly, the o-layer is defined as the observation layer and thus everything
above will not be calculated (materialized) right away, but only upon request,
if it piques the curiosity of the analyst. The o-layer is the layer the analyst
uses to observe the stream of data, to make decisions on how to take action
or what to analyze further (by looking at the layers above).
Again all triples have been aggregated in all dimensions within their dimen-
sion: user groups have been rolled up to * (meaning all user groups), URL
groups to theme and minutes to quarters. Therefore the o-layer consists of
(*, theme, quarter) tuples.

102

Finally, we look at the layers between the m-layer and the o-layer. To reca-
pitulate: no layers below the m-layer, nor any layers above the o-layer have
been materialized. But some layers between the m- and o-layer have been
materialized: those along the popular path. The popular path is the path
the analyst is most likely interested in to follow, to dig deeper into the data
stream (to achieve a deeper understanding) while analyzing the stream. This
is where the popular path cubing technique steps into the spotlight.

Popular Path Cubing

Popular path cubing computes and maintains a single popular aggregation
path from the m-layer to the o-layer. The result is that queries that fall
within any of those layers can be answered immediately, without further
computation; and that queries that fall outside of those layers can be an-
swered with minimal online computation: we don’t have to start computing
from the raw data, we can start from the m-layer in the worst case, and in
other cases we can start from the highest level popular path cuboids that
contains the set of dimensions relevant to the query.
Initial cube computation and incremental updates are similar: the raw stream
data is scanned once and generalized into the m-layer. It is then inserted into
the corresponding path of the H-tree, increasing the count and aggregating
the measure values of the corresponding leaf node in the corresponding slot
of the tilted time frame. The aggregation values for the cuboids along the
popular path can be calculated by updating all the nodes starting from the af-
fected leaf node (which belongs to the m-layer) to the o-layer (the root node)
whenever the time granularity of the leaf node layer warrants this (e.g. when
the m-layer’s time granularity is a minute, then at the end of every minute
the data will be rolled up from leaf cuboids to higher level cuboids). For
details about the initial cube computation and incremental updates, please
look at section 4.2 in the study [74].

A data structure is required to be able to efficiently compute and store the
popular path cuboids. The required space should be minimal.
The H-tree (hyper-linked tree) is a data structure the study finds suitable for
this task—this data structure was introduced in [75]. There are no formal
definitions of the hyper-linked tree to be found anywhere; however, there
is an easy way to explain it: it is a superset of the FP-tree data structure
(see section 3.3.2). The FP-tree data structure is capable of storing a single
number (the support count) on each node, the H-tree is capable of storing
multiple numbers (e.g. sum and count, to be able to calculate the average
and still remain incrementally updateable) on each node. Both use the same

103

header table concept. Both rely on prefix paths in order to be as compact as
possible.

For an in-depth explanation of the algorithms used, we refer to [74], example 4
and section 4.2.

5.9.3 Performance

To evaluate the effectiveness and efficiency of the stream cube, the study [74]
also performed an extensive performance study using synthetic data sets.

They compared the following algorithms’ space and time requirements:

1. full cubing

2. top-k cubing

3. popular path cubing

4. no precomputation (only the base cuboid at the m-layer is precom-
puted)

For details, see section 5 in [74]. The results can be summarized as follows:

• popular path cubing is an efficient and feasible methodologies

• no precomputation is the second choice

• full cubing is too costly in both space and time

• top-k cubing is not a good candidate because it cannot handle incre-
mental updating of a stream data cube

5.9.4 FP-Stream + Stream Cube

In section 5.9.2, we already explained the H-tree data structure by using the
FP-tree data structure. So an obvious result is to attempt to combine both
data structures and the accompanying algorithms into a single data structure
with an accompanying set of algorithms, to be able to answer both OLAP
queries and perform frequent itemset mining using a single data structure.
Instead of having separate data structures (and thus combined space and
time requirements), we may be able to significantly improve performance.

104

In this section, we will look into combining the FP-stream (see section 3.3.2)
and Stream Cube algorithms.

The plan was to to attempt this by first writing an FP-stream implementation
and then retrofitting a Stream Cube on top/inside of it. Unfortunately, due
to time constraints, no OLAP functionality has been implemented, and hence
this was not further researched.

105

6 Conclusion

The user begins by integrating Episodes with his web site, which will log the
measured results to an Episodes log file. This log file by itself is a good set of
data that can be interpreted, but it would be too time-intensive to manually
analyze it. Hence the mining of meaningful associations between the context
of a page view and a slow episode needs to be automated.

Episodes log mining (section 9), which is a specialization of web usage
mining, has been studied from a high-level perspective: more detail would
have added many implementation details, and the implementation belongs
in part two of this thesis. Therefore, the necessary details will be added in
part two of this thesis.

Also, because web usage mining is only designed to work with static data
sets (that are updated in batches), regular data mining techniques were not
sufficient for the purpose of this thesis, in which the goal is to detect problems
instantaneously: we need mining of data streams, i.e. data sets to which data
is being appended continuously.

Hence data stream mining (section 3) is the next subject that has been
studied. We’ve looked at a large set of frequent item mining algorithms and
two frequent itemset mining algorithms, one of which builds upon a frequent
item algorithm and the other of which builds upon a famous frequent itemset
mining algorithm for static data sets, FP-growth.

However, frequent pattern mining algorithms can only find problems that
persist over a certain period over time, that gradually grow and fade. We
also need to be able to detect brief problems, e.g. caused by traffic spikes.
That is, we also want to detect infrequent issues.

For this, we look into anomaly detection (section 4) in general and con-
textual anomaly detection in particular. We’ve discussed two contextual
anomaly detection algorithms.

Finally, automatically detecting problems and presenting them to the user is
excellent, but the user may also want to inspect all data himself. He may for
example want to look at charts of average page loading time in Belgium and
those in the United States. Or maybe compare this month’s performance
with that of a year ago in Internet Explorer, because optimizations have
been made particularly for that browser. In other words: the user may want
to inspect the data from multiple contexts, with each context limiting one
or more contextual, categorical attributes (e.g. browser, location, operating
system . . .) to one or more values.

107

That can be achieved with OLAP (section 5), which is designed to be able
to quickly answer queries about multidimensional data. We’ve explained the
data cube in-depth and discussed several algorithms that help improve its
query performance.
Additionally, we’ve discussed the stream data cube in detail, which will allow
the data cube to be applied to the continuous stream of data generated by
Episodes.

108

Part II

Implementation

In part one—the literature study, it was not yet explained how anything
should be implemented, i.e. using which algorithms. That has been done in
this second part of this thesis. Of course, it was impossible to write about
the “how” part when the literature study had not yet been written.

In the outlook that I wrote at the end of the literature study for this thesis, I
had written that it would be possible for the “what” part to change due to low
feasibility of some of the desirable features. This possibility has come true:
due to time constraints (caused by severe difficulties that had to be overcome
during the association rule mining implementation), I have unfortunately not
been able to implement anomaly detection nor OLAP support. However,
these omissions do not render my master thesis useless.

Quite the contrary, in fact, I’m both glad and proud to announce that the
resulting application that was implemented as part of this master thesis is a
very capable tool that will hopefully become part of the tools used daily by
contemporary web developers.

Academic year 2010—2011

7 Overview of work performed

1. Finished the literature study.

(a) Polished the literature study based on feedback from Prof. dr.
Wim Lamotte, one of my assessors.

(b) Added section 5.9 , “Stream Cube: Data Cube for Data Streams”.

2. Implemented the envisioned application.

(a) Wrote EpisodesParser, which is designed to parse Episodes log
files. Important subtasks were:

i. Wrote QCachingLocale, a class to speed up time string pars-
ing in Qt.

ii. Wrote QBrowsCap, a Qt library to parse and map user agent
strings to usable descriptions.

iii. Wrote QGeoIP, a Qt library to map IP addresses to geograph-
ical locations and ISPs.

iv. Wrote EpisodesDurationDiscretizer, a class that can dis-
cretize episodes durations based on user-defined intervals.

v. Wrote the code necessary to read the input log files and con-
vert each line into the corresponding transactions upon which
data mining can be applied

(b) Wrote Analytics, which is designed to mine (analyze) the trans-
actions generated by EpisodesParser. This consisted of two ma-
jor phases:

i. Implement the FP-Growth algorithm, which is the algorithm
for frequent itemset mining over static data sets (not data
streams!), as well as a rule miner based on the Apriori al-
gorithm. Next, add support for constraints, since this allows
for more efficient mining, especially in our case: we are only
interested in finding causes for slow page loads, not fast or
acceptable page loads.

ii. Implement the FP-Stream algorithm, which builds upon the
FP-Growth algorithm, and again extend it to add support for
constraints. The same rule miner was reused.

(c) Wrote a front-end (a user interface) to make it easy to apply the
functionality provided by this master thesis to any website. This
interface also significantly simplifies the interpretation of the re-
sulting data.

111

3. Described the implementation in the report.

(a) Added this section, section 7, “Overview of work performed” to
supersede the “Outlook” section, which provided a look ahead to
part two of this thesis, which has now obviously been completed.

(b) Added section 8, “The Process”.

(c) Added section 9, “Episodes Log Mining”.

(d) Added section 10, “Implementation”.

(e) Added section 11, “WPO Gaining attention”.

License

Every piece of software that was written for this thesis, has been released
as open source software. As a license, I opted for the UNLICENSE, which
allows anybody to reuse the code, for either commercial or non-commercial
use since it places the code in the public domain.

The UNLICENSE was modeled after the SQLite license. SQLite is a piece
of open source software that has become incredibly ubiquitous. If you have a
smart phone, it probably uses SQLite for something. Many pc applications
also use SQLite.

As the name already indicates, the UNLICENSE is not really a license. It is
in fact a copyright waiver : it is meant to “un-license” your code, so that it
is free of licenses, i.e., so that it is in the public domain.

See http://unlicense.org/ for details.

112

http://unlicense.org/

8 The Process

Below, there is a schema that shows what happens during the various stages
of the web performance optimization analytics process, along with references
to the sections in which each stage is described in more detail.

Stage See . . .

Episodes.js reference [5]

↓

Episodes.log \

↓

pre-processing sections 9.2 & 10.2
Episodes

log ↓ sections 3, 9 & 10
mining

association rule mining sections 2.1, 3, 10.3 & 10.4

↓

anomaly detection section 4

↓

OLAP section 5

↓

UI + visualizations section 10.5

The first two stages are already implemented by the Episodes library. In [1],
a plug-in for Drupal-based web sites is provided [11] to make the integration
of the Episodes library into a Drupal web site trivial.

113

All later stages are covered by this master thesis.15

15Anomaly detection and OLAP have not been implemented due to time constraints.

114

9 Episodes Log Mining

For Episodes log mining, I have used web usage mining as a
basis. However, it was clear that this would be too “applied”
to qualify as a true member of the literature study I performed
for the first part of this thesis, hence it has been included in the
second part—the implementation part.

This led to concluding that numerical data mining was not
going to be part of this thesis, and that normal categorical as-
sociation rule mining would not suffice; hierarchical categorical
association rule mining is necessary, for which concept hierar-
chies need to be used (this is also called generalized association
rule mining).

9.1 Introduction

9.1.1 Web Usage Mining

Episodes log mining is a specialized form of web usage mining, which in turn
is a type of web mining. But what is web mining? According to [27]:

Web mining aims to discover useful information or
knowledge from the web hyperlink structure, page content and
usage data. Although web mining uses many data mining tech-
niques, it is not purely an application of traditional data
mining due to the heterogeneity and semi-structured or
unstructured nature of the web data. Many new mining
tasks and algorithms were invented in the past decade. Based on
the primary kinds of data used in the mining process, web mining
tasks can be categorized into three types: web structure mining,
web content mining and web usage mining.

The web mining process is similar to the traditional data mining process,
however, there usually is a difference in the data collection step. In tradi-
tional data mining, the data is often already collected (and stored in a data
warehouse). In the cases of web structure mining and web content mining,
collecting data can be a large and daunting undertaking. Fortunately, in the
case of web usage mining, it is fairly simple: most web servers keep log files
already (e.g. Apache server logs).
As indicated at the beginning of this section, it is only web usage mining
that we need, the other types of web mining are irrelevant for this thesis.

115

Again according to [27], web usage mining is:

Web usage mining refers to the automatic discovery and
analysis of patterns in clickstream and associated data collected
or generated as a result of user interactions with web resources
on one or more web sites. The goal is to capture, model and
analyze the behavioral patterns and profiles of users inter-
acting with a web site. The discovered patterns are usually
represented as collections of pages, objects, or resources that
are frequently accessed by groups of users with common
needs or interests.

9.1.2 Web Usage Mining Versus Episodes Log Mining

However, in the context of web performance optimization analytics (which is
what this thesis is about), typical web server logs are not sufficient: they only
capture which resources were requested by user agents and some metadata
(date and time, IP address, referrer, etc.). That is by itself not enough
information about the actual page loading performance of the browser as
perceived by the end user. It only provides sufficient information for other
kinds of analysis, such as typical navigation paths, popular pages, and so on.
While that is interesting in itself and can be useful for suggesting advanced
page loading performance improvements (e.g. preloading images of expected
subsequent pages in typical navigation paths, see section 2.2.1), it doesn’t
provide enough information to be able to perform page loading performance
analysis.

That is why Episodes was developed. As explained earlier, Episodes records
the durations of the various episodes during the loading of the page and when
the page has finished loading, it sends this information to a web server log.
It does this by means of a specially formatted URL—this URL contains the
names and durations of the recorded episodes (in the same order as they oc-
curred) as a single (very long!) HTTP GET parameter. This GET parameter
can then be parsed to easily extract the episodes that were recorded.

The additional information that is virtually always included in web server log
files, such as IP address, date and time and user agent can then be used to
apply web performance optimization analysis: IP addresses can be mapped
to locations/ISPs to pinpoint bad performance to a specific location/ISP,
date and time can be used to detect bad performance during specific times
during the day (indicating overloaded web or application servers) and finally

116

the browser and operating system can be used to detect performance issues
with a specific browser, possibly a specific version of that browser and even
on a specific operating system.

And, of course, any web performance issues that are a combination of the
above can also be detected: web performance problems that only occur for
a specific browser/ISP combination, for example (which might be caused by
a badly configured web proxy server for example).

Examples

Examples of web performance issues that should be detected automatically
are, for example:

• http://example.com/ is slow in Belgium , for users of the ISP
Telenet

• http://example.com/path and all pages in this directory have slowly
loading CSS

• http://example.com/path/b has slowly loading JS for visitors that
use the browser Internet Explorer 6 or 7

The Definition of ’Slow’

Of course, “slow” is a subjective quality. There are many possible methods
for defining “slow”. I opted for one where the analyst using the application
can determine the definition of “slow”:

There is a threshold y defined for each episode; durations for
this episode higher than y would be marked as “slow”.

Analogously, one could define multiple “speeds”: very slow, slow, acceptable,
fast, very fast, for example. This would need to come with sane defaults, but
should be configurable by the user in the end.

Note that if we would define an episode as slow if it would be among the
slowest x%, then the threshold for a “slow” episode constantly changes, as
new episodes are being added. This can be worked around by using data
stream mining, as opposed to “regular” data mining (see section 3).

117

9.1.3 The Mining Process

The overall web usage mining process (and therefore Episodes log mining,
which is merely a specialization) can be seen as a three-stage process. Below
I have provided a high-level comparison of the differences between web usage
mining and Episodes log mining.

1. data collection and preprocessing

• Web usage mining: this would consist of partitioning the log en-
tries into a set of user transactions. In pre-processing, knowledge
about the site content or structure, or semantic domain knowledge
(from the used ontologies) may be used to enhance the transaction
data.

• Episodes log mining: here, it is quite different: data collection is
not an issue; and preprocessing consists of mapping the IP address
of each log entry to a location and an ISP (if possible), extracting
the various episodes from the specially formatted URL, normal-
izing the user agent string, and so on. See section 9.2.2 for more
details.
The data collection has already been implemented in [1] (as already
indicated in section 8). The preprocessing has been implemented
as part of this master thesis.

2. pattern discovery

• Web usage mining: find hidden patterns reflecting typical behav-
ior of users and generate summary statistics on components, ses-
sions and users.

• Episodes log mining: find hidden patterns related to web perfor-
mance and summary statistics such as average page loading time
per country or browser.
The discovery of these patterns has been implemented as part of
this master thesis. For this, data stream mining—see section 3—
was used. It was planned to also use anomaly detection—see sec-
tion 4, but unfortunately, this was not implemented due to time
constraints.

3. pattern analysis

118

• Web usage mining: the discovered patterns and statistics are fur-
ther processed, filtered, and then used in recommendation engines,
visualization tools or analytics/report generation tools.

• Episodes log mining: the discovered patterns and statistics are dis-
played in a tool that provides visualizations and automatically
makes suggestions as how to solve automatically detected web
performance issues.
This analysis tool has been implemented (although without any vi-
sualizations) as part of this master thesis. It was planned to use
OLAP for this—see section 5, but due to time constraints, I was
unable to implement this.

Simultaneously, this overview of course also gives a high-level idea of what
the implementation that will accompany this thesis will entail.

9.2 The Attributes

As explained before, essentially the goal of this thesis is analyzing Episodes
log files. Each log entry is stored in a format which has been optimized to
store only the information that may some day be useful for Episodes log
mining instead of regular web usage mining. The format is as follows:

211.138.37.206 [Sunday , 21-Jun -2009 06:23:37

+0200] "?ets=css:63, headerjs :4453, footerjs :16,

domready: 7359, tabs:31,

ToThePointShowHideChangelog :0, gaTrackerAttach

:16, DrupalBehaviors :47, frontend :8015" 200 "http

:// driverpacks.net/applications" "Mozilla /4.0

(compatible; MSIE 6.0; Windows NT 5.1; SV1; (R1

1.6); .NET CLR 2.0.50727)" "driverpacks.net"

Each such log entry (of which there is one for each page view!) can be
transformed into a long list of categorical attributes: IP address, location
(by mapping the IP address to a location), date, episode names, browser,
operating system, and so on. There also is an important list of numerical
attributes: the episode durations.

In this section, a more in-depth look is given at the various attributes in an
Episodes log file, what they mean, how they should be generated from the

119

fields in each log entry and how they should be used to provide meaningful
insight into web performance issues for the end user.

9.2.1 All Fields Explained

A complete list of the “fields” in the above sample log entry is provided
below. Note that the available fields differ slightly from those for typical web
usage mining (see [28]) and that the semantics may also differ slightly (see
the per-field explanations below).

• IP address: 211.138.37.206. The IP address can be mapped to a
location (e.g. Hasselt, Belgium) and mapped to an ISP (because each
IP is assigned specific “blocks” of IP addresses).

• Date and time (including timezone): [Sunday, 21-Jun-2009 06:23:37

+0200].

• Query string (i.e. all GET parameters):

"?ets=css:63, headerjs :4453 , footerjs :16, domready:

7359, tabs:31, ToThePointShowHideChangelog :0,

gaTrackerAttach :16, DrupalBehaviors :47,

frontend :8015"

From this, the following episode names and durations can be parsed:

Order Episode name Episode duration (ms)

1 css 63
2 headerjs 4453
3 footerjs 16
4 domready 7359
5 tabs 31
6 ToThePointShowHideChangelog 0
7 gaTrackerAttach 16
8 DrupalBehaviors 16
9 frontend 8015

Important note: episodes are not necessarily disjoint! In the above
example for example, frontend is the set that contains all other episodes
and domready is a subset of frontend that contains css, headerjs,

120

and footerjs. In other words: certain episodes may in fact be con-
tainer episodes. I.e.:

domready = {css, headerjs, footerjs}
frontend = domready ∪ {tabs, ToThePointShowHideChangelog,

gaTrackerAttach, DrupalBehaviors}

• HTTP status code: 200.

• HTTP referrer: "http:// driverpacks.net/applications".
Note that typically the referrer is the page through which the end user
navigated to end up on the current page (for which a log entry was
made). However, in Episodes logs, this is no longer true: the referrer
is now the page for which the episodes were recorded (since that is the
page making the request to the Episodes logging server).

• User agent: "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;

SV1; (R1 1.6); .NET CLR 2.0.50727)". From this seemingly poorly
structured string of data, it is possible to derive the end user’s browser
and operating system, which is Internet Explorer 6 in this example,
running on Windows 2000, XP or Server 2003 (all of which use the
Windows NT 5.1 kernel).
Note that it in typical web usage mining [28], it is is necessary to detect
bots and crawlers16, because one wants to analyze end user behavior,
and a bot or crawler obviously is not an end user. However, bots only
download the (X)HTML. Possibly, they also download the associated
resources (CSS, JavaScript, fonts, images . . .), but if they do, it is only
because they want to store it, not because they want to render the page.
Hence the Episodes JavaScript does not get executed and therefore no
log entries will appear for bots in the Episodes log file. Conclusion:
bots are a non-issue for Episodes log mining!

• Host (i.e. the site for which this is being logged, this allows multiple
sites to use the same logging server): "driverpacks.net".

For the sake of completeness, this is what the Episodes log format looks like
when configuring Apache (consult [29] for detailed explanations about the
syntax):

LogFormat "%h %{[%A, %d-%b-%Y %H:%M:%S %z]}t \"%q\"

%>s \"%{ Referrer}i\" \"%{User -Agent}i\" \"%{ Host}

i\"" episodesLogFormat

16Such as as GoogleBot, which is used by Google to index the world wide web.

121

9.2.2 Preprocessing Fields into Numerical and (Hierarchical) Cat-
egorical Attributes

A single field in each Episodes log entry contains numerical attributes: the
query string field. It contains all episode durations, which are of course
numerical attributes.

Many categorical attributes can be extracted from the other fields of an
Episodes log entry, preferably in a hierarchical manner because that would
allow humans to more easily interpret the results.
For example, if a problem exists for all ISPs in a country, then there likely
is a problem with network connections to that country, and it’d be better
to show a single web performance issue marking the country as problematic,
instead of many issues with one for each ISP in that country: this would
make it easier for the end user to interpret.
In section 9.2.3, it is explained how this can be implemented.

Here is an overview of how each usable field in the Episode slog file should
be mapped to a (hierarchical) categorical attribute:

• IP address

– location

∗ preferably hierarchical: continent → country → state/province

→ city

e.g. Europe → Belgium → Limburg → Hasselt

∗ if a hierarchical value is not feasible, then storing just the
country is likely the best alternative
e.g. Belgium

– ISP

∗ can be mapped to an ISP through a database of “IP address
block” assignments to ISPs.

– IP range

∗ requires the IP address to be stored in a hierarchical manner
e.g. 211.138.37.206 would need to be stored as a binary
number (or at least loaded as such into memory at processing
time) and not as a string, to allow for IP range detection.
This is possible thanks to CIDR17 [30, 31].

17Classless Inter-Domain Routing

122

• Date and time

– Date

∗ preferably hierarchical: YYYY → MM → DD

e.g.: 2009 → 06 → 21

∗ if a hierarchical value is not feasible, then storing the entire
date as a string is likely the best alternative
e.g.: 2009-06-21

– Time

∗ preferably hierarchical: HH → MM → SS

e.g.: 06 → 23 → 37

∗ if a hierarchical value is not feasible, then storing the entire
date as a string is likely the best alternative
e.g.: 06:23:37

• Query string: numerical attributes can be parsed from the query string:
one for each episode. See the lengthy explanation in section 9.2.1 for
more details.

• HTTP status code: simply storing the status code as a number (but
as a categorical attribute!) is sufficient.

• HTTP referrer

– path

∗ preferably hierarchical: dir1 → dir2 → dir3 → file

e.g.: http://example.com/foo/bar/baz.html would be stored
as foo → bar → baz.html

∗ if a hierarchical value is not feasible, then storing the entire
relative path is likely the best alternative
e.g.: http://example.com/foo/bar/baz.html would be stored
as /foo/bar/baz.html

• User agent

– operating system

∗ preferably hierarchical: operating system → major version

→ minor version → architecture

e.g.: Windows → 7 → Service Pack 1 → x64

123

∗ if a hierarchical value is not feasible, then storing the operat-
ing system product name is likely the best alternative
e.g.: Windows XP, Windows 7 x64, Mac OS X Snow Leopard,
Ubuntu 10.04

– browser

∗ preferably hierarchical: browser → major version → minor

version

∗ if a hierarchical value is not feasible, then storing both each
major (x.0) browser version and each minor (x.y.z) browser
version—as 2 separate categorical attributes—is likely the
best alternative
e.g.: store both Firefox 3 and Firefox 3.6.1 , Chrome 5

and Chrome 5.0.375.55 , etc.

– user agent

∗ the full user agent string
e.g.: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; (R1 1.6); .NET CLR 2.0.50727)

• Host: simply storing the host string is sufficient.

9.2.3 Mining with Concept Hierarchies

In section 9.2.2, it is indicated repeatedly that each categorical attribute is
preferably hierarchical, because that makes it possible to provide more easily
interpretable results for us humans.

However, hierarchical categorical attributes require the use of concept hier-
archies (sometimes also called a taxonomy or item taxonomy).

A concept hierarchy is a multilevel organization of
the various entities or concepts defined in a particular
domain. For example, in market basket analysis, a concept hi-
erarchy has the form of an item taxonomy describing the “is-a”
relationships among items sold at a grocery store—e.g., milk is
a kind of food and DVD is a kind of home electronics equipment.

A concept hierarchy can be represented through a directed acyclic graph.
For the example in the above definition, that would look like figure 24.

For more details, consult [34], which describes the “mining of generalized
association rules”, which is synonymous with “mining with concept hierar-
chies”.

124

Figure 24: Example of a concept hierarchy.
(Figure courtesy of [25].)

New Possibilities by Using Concept Hierarchies

When one uses concept hierarchies in association rule mining, some new
possibilities open up [25]:

1. Support counts of items at the lower levels of the hierarchy can be
summed for their parent items. This means that while many low items
in the concept hierarchy may have a low support count (and thus not
meet the minimum support count), their parent nodes may have a
sufficiently high support count and thus result in an association rule,
that would not have been found without the use of a concept hierarchy.

(a) E.g.: both printers and scanners may be sold in limited numbers,
but their combined sales are summed as computer accessories, and
these might be high, which would result in an association rule that
would otherwise not have been found.

(b) Applied to Episodes log mining: assume the number of Episodes
log entries is low for the operating systems Mac OS X 10.4, Mac
OS X 10.5 and Mac OS X 10.6. Hence their support count is low
and does not meet the minimum support count. However, com-
bined they do meet the minimum support count. And thus a rule
“http://example.com/ is slow for visitors that use the operating

125

system Mac OS X 10.4” would not be found, nor for any other ver-
sions of the operating system, but a rule “http://example.com/ is
slow for visitors that use the operating system Mac OS X” would
be found, thanks to the use of concept hierarchies.

2. Similarly, association rules involving items at the lower levels of a con-
cept hierarchy can be very specific and may thus be of less interest
than rules at the higher levels. When using a concept hierarchy, it is
possible to summarize these very specific association rules into more
general association rules, making the results more easily interpretable
and likely also more useful.

Implementation Notes

Standard association rule mining can be adapted to incorporate concept hier-
archies fairly easily. Each transaction t is replaced with its extended transac-
tion t′, which contains all the items in t, plus the corresponding ancestors. For
example, when the user agent string would be “Mozilla/4.0 (compatible;

MSIE 6.0; Windows NT 5.1; SV1; (R1 1.6); .NET CLR 2.0.50727)”, then
the following ancestors would be added: Internet Explorer 6.0, Internet Ex-
plorer 6, Internet Explorer, Windows XP Service Pack 1 x86, Windows XP
Service Pack 1, Windows x86, Windows.

An important implication that may not be immediately obvious, is that the
summing of support counts at a of the child concepts at a lower level for the
parent concept at a higher level does not need to be performed explicitly.
This happens automatically thanks to the extending of transactions!

Thanks to this approach, existing association rule mining algorithms such as
Apriori or FP-growth can be applied to the extended transactions, to find
rules over multiple levels of the concept hierarchy. While this is clearly trivial
to implement, there are also several obvious limitations [25]:

1. If the minimum support count is set too high, then only association
rules that involve the items at the higher levels are discovered. Anal-
ogously, if the minimum support count is set too low, then too many
association rules (many of which may be redundant) will be generated
and the number of required computations may rise too high.

2. This is in fact a consequent of the previous point: redundant association
rules may be generated. A rule A→ B is redundant if a more general
rule Â→ B̂ exists, where Â is an ancestor of A and B̂ is an ancestor of

126

B and both rules have similar confidence. If confidence differs, then it
it is possible that a more specific rule occurs with a higher confidence
than the general rule. This would suggest that while the association
exists for the more general rule, that it is more pronounced in the more
specific rule.
Fortunately, it is easy to eliminate redundant itemsets during frequent
itemset generation, given that the concept hierarchy is known: remove
frequent itemsets that would result in more specific rules when there is
a frequent itemset with similar confidence that would result in a more
general rule.

3. Because all transactions are increased in size (i.e. they’re extended
with ancestor items), the number of candidate frequent item sets and
frequent itemsets will also grow. Depending on the form of the concept
hierarchy, this growth may even be exponential.

Applied to Sample Web Performance Issues

If we now apply this more detailed information to the three sample web
performance issues mentioned before, then we can gain more insight in how
this can be detected:

• http://example.com/ is slow in Belgium , for users of the ISP
Telenet

– The IP address needs to be mapped to a hierarchical location.
Since “Belgium” is shown and not one or more specific cities, it is
apparently the case that this page is slow everywhere in Belgium.

– The IP address needs to be mapped to an ISP, e.g. Telenet. Since
“Telenet” is shown and not just “Belgium”, this must be happen-
ing mostly for users of the ISP Telenet in Belgian cities, but not
necessarily for users of other ISPs.

• http://example.com/path and all pages in this directory have slowly
loading CSS

– If the path (extracted from the HTTP referrer field) were not
stored in a hierarchical manner, we would get a list of pages, in-
stead of the parent page (/path), which nicely summarizes the
association rules. It would still be possible to expand this associ-
ation to provide more details.

127

• http://example.com/path/b has slowly loading JS for visitors that
use the browser Internet Explorer 6 or 7

– Without hierarchical categorical attributes for the user agent field,
but just the exact user agent string, it is likely that nothing would
be detected. Even with specific browser versions, it is possible that
nothing would be detected, or there might be too much informa-
tion (e.g. a very long list with exact versions of Internet Explorer),
but thanks to hierarchical attributes, it is possible to provide the
very understandable “Internet Explorer 6 or 7” in the association
rule.

Conclusion

In general, we can see that we need to detect associations between a single nu-
merical attribute (which is discretized to a categorical attribute, duration:slow)
and one or more of the “circumstantial” categorical attributes: date, time,
location, ISP, IP range, path, operating system, browser, browser version
and user agent.

While implied by the contents of this section, it is important to note that
each Episodes log line is not expanded to one transaction, but to many
transactions: one for each episode that occurred in the page view that corre-
sponds to that log line! Each transaction then contains one episode (both its
name episode:* and its duration duration:*) plus all the “circumstantial”
categorical attributes that were associated with this page view.

128

10 Implementation

10.1 General

The implementation consists of three modules:

1. EpisodesParser: designed to parse Episodes log files and map each line
in these log files to as many transactions as there are unique episodes
in the given log line, as described in section 9.

2. Analytics: designed to mine (or put more generally, to analyze) the
transactions generated by EpisodesParser for frequent itemsets and
then mine these resulting frequent itemsets to find association rules.

3. UI: the user interface that provides a more easy to interpret presenta-
tion of the results found by Analytics.

10.2 EpisodesParser

In essence, EpisodesParser closely follows the behavior described in section
9.2, but some additional, more technical and in-depth explanation is required
for a full understanding.

10.2.1 Information Representation

Roughly, each line in the Episodes log file that is currently being processed is
read from the file into memory, into a QString. It is then converted into an
EpisodesLogLine struct, which is able to store the raw data. Then, this
EpisodesLogLine struct is converted into an ExpandedEpisodesLogLine

struct, which is able to store the full hierarchy of information for each at-
tribute.

You may wonder why there is an intermediate representation Episodes

LogLine, i.e. why do we go through QString → EpisodesLogLine →
ExpandedEpisodesLogLine instead of directly QString→ ExpandedEpisodes

LogLine? There is a simple, yet very compelling reason: by using this clean
separation, it becomes easier to test and to add new features at a later point
in time.

Let us look at an example. The IP address (which may be in different formats:
either IPv4 or IPv6) contained in each Episodes log line is read from the log

129

file as a string. This string needs to be transformed into a more easily ma-
nipulable numeric representation. This is the QString → EpisodesLogLine

step. Next, this numeric representation is used to retrieve the ISP and geo-
graphical location hierarchy that correspond to this IP address. This is the
EpisodesLogLine → ExpandedEpisodesLogLine step.
However, the same IP address is likely to appear multiple times. Simi-
larly, the exact same user agent is likely to appear many times. While
EpisodesLogLine requires little memory usage because it only stores the
minimal raw representation, ExpandedEpisodesLogLine stores an entire hi-
erarchy of information. Hence, it makes sense that ExpandedEpisodesLogLine
only stores an identifier which can be looked up in a hash table. Thanks to
this optimization, ExpandedEpisodesLogLine consumes very little memory
and still conveys all information!

Hence, these are the relevant types, which should all be self-explanatory:

typedef uint Time ;

// E f f i c i e n t s t o rage o f Episode names : don ’ t s t o r e the a c t ua l names , use
// 8− b i t IDs in s t ead . This a l l ow s f o r 256 d i f f e r e n t Episode names , which
// shou ld be more than s u f f i c i e n t .
typedef QString EpisodeName ;
typedef quint8 EpisodeID ;
typedef QHash<EpisodeName , EpisodeID> EpisodeNameIDHash ;
typedef QHash<EpisodeID , EpisodeName> EpisodeIDNameHash ;
// The EpisodeDuration w i l l be d i s c r e t i z e d to an EpisodeSpeed f o r
// a s s o c i a t i on ru l e mining .
typedef QString EpisodeSpeed ;
struct Episode {

EpisodeID id ;
EpisodeDuration durat ion ;

#ifde f DEBUG
EpisodeIDNameHash ∗ IDNameHash ;

#endif
} ;
typedef QList<Episode> EpisodeL i s t ;

// 510 i s the h i g h e s t HTTP s t a t u s code , so 9 b i t s would be s u f f i c i e n t , but
// t ha t ’ s not p o s s i b l e , so we use 16 b i t s i n s t ead .
typedef quint16 HTTPStatus ;

typedef QString URL;
typedef QString UA;

130

struct EpisodesLogLine {
QHostAddress ip ;
Time time ;
Ep i sodeL i s t ep i s ode s ;
HTTPStatus s t a t u s ;
URL u r l ;
UA ua ;

} ;

struct Locat ion {
QString cont inent ;
QString country ;
QString r eg i on ;
QString c i t y ;
QString i s p ;

} ;
typedef quint32 LocationID ;
typedef QHash<Location , LocationID> LocationToIDHash ;
typedef QHash<LocationID , Location> LocationFromIDHash ;

struct UAHierarchyDetai ls {
// OS d e t a i l s .
QString plat form ;
// Browser d e t a i l s .
QString browser name ;
QString browse r ve r s i on ;
quint16 browse r ve r s i on majo r ;
quint16 browser ver s i on minor ;
bool i s m o b i l e ;

} ;
typedef quint16 UAHierarchyID ;
typedef QHash<UAHierarchyDetai ls , UAHierarchyID> UAHierarchyDetailsIDHash ;
typedef QHash<UAHierarchyID , UAHierarchyDetai ls> UAHierarchyIDDetailsHash ;

struct ExpandedEpisodesLogLine {
LocationID l o c a t i o n ;
Time time ;
Ep i sodeL i s t ep i s ode s ;
HTTPStatus s t a t u s ;

131

URL u r l ;
UAHierarchyID ua ;

LocationFromIDHash ∗ hash locat ion f romID ;
UAHierarchyIDDetailsHash ∗ uaHierarchyIDDetai lsHash ;

} ;

10.2.2 Program Flow

First, a chunk of 4,000 lines is read from the log file by Parser::parse().
Reading entire chunks instead of line per line is far more efficient, as this
results in less overhead. Each time such a chunk (which is a QStringList)
is read, the Parser::parsedChunk(QStringList) signal is emitted. This
signal is connected to the Parser::processParsedChunk() slot.

This slot then convert each raw line (a QString) to an EpisodesLogLine

(through Parser::mapLineToEpisodesLogLine()), splits the chunk into 15-
minute batches, i.e. chunks are split and merged as is necessary to get all
Episodes log lines in each 900-second window (15 minutes × 60 seconds

minute
= 900

seconds) in a single batch18.

Each resulting batch of EpisodesLogLines is then fed to Parser::process

Batch(), which does most of the work: it expands the EpisodesLogLine to
a far more detailed ExpandedEpisodesLogLine (through Parser::expand

EpisodesLogLine()), which in turn gets converted to multiple transactions19

(through Parser::mapExpandedEpisodesLogLineToTransactions()), and
finally these are all added to a (huge!) list of transactions. It is this list of
transactions that is the desired end result of the EpisodesParser module:
this is where its task ends.

10.2.3 Notes Regarding the Conversion to Transactions

While it has been mentioned already that the conversion from Expanded

EpisodesLogLines to actual transactions is being handled by Parser::

mapExpandedEpisodesLogLineToTransactions(), there are some notewor-
thy remarks to be made.

18Note that it is required to work with EpisodesLogLines to be able to retrieve the time
for the given log line! I.e. it is impossible to efficiently know when a page view occurred,
given only a QString.

19As many transactions are generated as there are episodes in the given Episodes log
line — see the conclusion of section 9.

132

The Discretizing of Episodes Durations

It is also worth noting that episode durations (which are continuous numeric
attributes) are discretized by EpisodesDurationDiscretizer into categor-
ical attributes, by default to either duration:slow, duration:acceptable
or duration:fast. This discretization can be configured on a per-episode
basis by the user through a .csv file. Such a .csv file looks like this:

domready ,fast ,150, acceptable ,1000, slow

frontend ,fast ,100, acceptable ,1500, slow

headerjs ,fast ,100, acceptable ,1000, slow

footerjs ,fast ,100, acceptable ,1000, slow

css ,fast ,100, acceptable ,500, slow

DrupalBehaviors ,fast ,100, acceptable ,200, slow

tabs ,fast ,10, acceptable ,20,slow

ToThePointShowHideChangelog ,fast ,10, acceptable ,20,slow

As is quite obvious from this structure, the first column contains the episode
name, the second column contains the “speed name” for the fastest dis-
cretization, which goes from 0 ms to the value in the third column. As many
discretization levels as desired can be defined. For example, in the sample
.csv file above, there are three discretization levels for the domready episode
durations:

1. “fast” ∈ [0, 150] ms

2. “acceptable” ∈ [151, 1000] ms

3. “slow” ∈ [1001,∞] ms

Sample result The Episodes timing information

css:203, headerjs :94, footerjs :500, domready :843, tabs :110,

ToThePointShowHideChangelog :15, DrupalBehaviors :141, frontend :1547

is mapped to

((" episode:css", "duration:acceptable "),

(" episode:headerjs", "duration:fast"),

(" episode:footerjs", "duration:acceptable "),

(" episode:domready", "duration:acceptable "),

(" episode:tabs", "duration:slow"),

(" episode:ToThePointShowHideChangelog", "duration:acceptable "),

(" episode:DrupalBehaviors", "duration:acceptable "),

(" episode:frontend", "duration:slow "))

133

The HTTP Status Code

Only non-200 HTP status codes are included in the transactions, since 200
is the default status code and thus cannot reveal anything interesting.

The Location and User Agent Concept Hierarchies

Also worth noting are the generateAssociationRuleItems() methods of
the Location and UAHierarchyDetails structs20, which generate the fol-
lowing hierarchical categorical attributes according to their corresponding
concept hierarchies:

• Location

– location:<continent>, eg.: location:EU for Europe

– location:<continent>:<country>, eg.: location:EU:Belgium
for Belgium, Europe

– location:<continent>:<country>:<region>, eg.: location:
EU:Belgium:Limburg for Limburg, Belgium, Europe

– location:isp:<country>:<isp>, eg.: location:isp:Belgium:
Telenet for Telenet, Belgium

• UAHierarchyDetails

– ua:<platform>, eg.: ua:Win7 for Windows 7

– ua:<platform>:<browser name>, eg.: ua:Win7:Firefox for
Firefox on Windows 7

– ua:<platform>:<browser name>:<major browser version>,
eg.: ua:Win7:Firefox:3 for Firefox 3 on Windows 7

– ua:<platform>:<browser name>:<major browser version>
:<minor browser version>, eg.: ua:Win7:Firefox:3:6 for Fire-
fox 3.6 on Windows 7

– ua:isMobile, when it is a mobile user agent, such as the browser
on an iOS or Android device

20These methods are not listed in the program listing above, because they require a
relatively large amount of space and would only detract from the most important point of
that program listing: the data structures.

134

While these are not exactly as envisioned in section 9.2.2, they are very close,
and they have been experienced as being sufficient to get meaningful re-
sults after association rule mining. For example, location:<continent>:
<country>:<region>:<city> is missing, but has been omitted on pur-
pose: it was found to not add significant value. Only in extreme cases, there
will be enough traffic from one city to cause a city to show up in the results.
It can easily be re-enabled, though.

10.2.4 Obstacles

QCachingLocale

In Parser::mapLineToEpisodesLogLine(), we need to parse a string that
contains the date and time at which the episodes were recorded. For this, the
QDateTime::fromString() method is used. This method uses QSystemLocale
::query(), which asks the operating system on which the application runs
(Qt is a cross-platform toolkit) about the date/time locale settings.

Unfortunately, this method apparently suffers from severe performance issues
on Mac OS X — at least its implementation in version 4.7 of Qt. On Windows
and Linux, 1,000 calls to QDateTime::fromString() complete in ±40 ms,
but on OS X, they take ±4 seconds — a slowdown of ±100 times! Clearly,
this was a bug.

Hence, a work-around was devised in the form of the QCachingLocale class,
of which one instance must be created. Once that is done, the problem is
gone: it automatically caches all queries to QSystemLocale::query()! I
wrote a blog post on the subject [76], filed a bug report in Qt’s bug tracker
[77] and open sourced the code [78] under the UNLICENSE, but of course
with the necessary credits towards Hasselt University.
After integrating this class with the project, the performance improved from
±4 seconds for 1000 calls to ±20 ms, so now it was even faster than on
Windows and Linux!

QBrowsCap

While an entire user agent is stored in an EpisodesLogLine, after pass-
ing it through Parser::expandEpisodesLogLine(), which converts it to an
ExpandedEpisodesLogLine, it is necessary to map user agent strings to their
corresponding browser name and version, and operating system.

135

I had expected and hoped such a C/C++ library would exist — after all,
surely somebody must have done that in the past? Well, unfortunately, no
such library existed yet, or at least I could not find it after a lengthy search
session.

Because it is impossible to write a single, standardized routine that parses
this information from the user agent string, I had to rely on BrowsCap,
the Browsers Capabilities project [79]. This is the same data set the PHP
language relies on to identify browsers.

I’ve developed a C++ library (optimized for use with applications that also
use Qt) that makes it easy to download this data set, keep it up-to-date,
maintain a SQLite-powered index for faster mapping of user agent strings
(BrowsCap relies on ’globbing’ [82] and SQLite has built-in support for this).
To maximize performance, it even maintains an in-memory hash table.
Since it is optimized for use with Qt-powered applications and uses the data
set provided by the BrowsCap project, a logical name was QBrowsCap.
QBrowsCap was also made thread-safe, to allow for concurrent user agent
details lookup by multiple threads (therefor allowing greater user agent de-
tails lookup speeds because it allows a MapReduce-like approach, which can
be implemented in C++/Qt with Qt’s QtConcurrent). It also comes with
unit tests that ensure it works correctly.

QBrowsCap [80] is also an open source project, again available under the
UNLICENSE (again with the necessary credits towards Hasselt University).
A blog post [81] about QBrowsCap was also made while the implementation
was still ongoing.

Sample result The user agent string

Mozilla/4.0(compatible; MSIE6.0; WindowsNT5.1; SV1)

is mapped to

(”ua : WinXP”, ”ua : WinXP : IE”, ”ua : WinXP : IE : 6”, ”ua : WinXP : IE : 6 : 0”)

QGeoIP

The explanation for QGeoIP is fairly analogous to that for QBrowsCap:
while an IP address is stored in an EpisodesLogLine, after passing it through
Parser::expandEpisodesLogLine(), which converts it to an ExpandedEpisodes

LogLine, it is necessary to map IP addresses to their corresponding ISP and
physical location.

136

Unfortunately, no library was available for C++/Qt to map IP addresses to
physical locations either. I was lucky enough to find a C library though,
which I made easier to use by wrapping it in a Qt-friendly manner — I
baptized the result QGeoIP. The default building process of this C library is
also painful; QGeoIP simplifies this.

QGeoIP uses MaxMind’s [83] libGeoIP [84]. This library has one major
problem though: it seems to be impossible to make QGeoIP work in a thread-
safe manner, thus not allowing for concurrent IP to physical location mapping
by using multiple threads. Like QBrowsCap, QGeoIP also includes unit tests
that ensure it works correctly.

Like QCachingLocale and QBrowsCap, QGeoIP [85], too, is an open source
project that is available under the UNLICENSE (with again the necessary
credits towards Hasselt University). It was also covered by the same blog
post [81] that also discussed QBrowsCap.

Sample result The IP address 218.56.155.59 is mapped to

(" location:AS",

"location:AS:China",

"location:AS:China:Shandong",

"location:isp:China:AS4837 CNCGROUP China169 Backbone ")

10.2.5 End Result

The end result is that a single Episodes log line is mapped to many trans-
actions that convey quite a lot of information. For example, suppose this is
the Episodes log line that gets parsed:

"218.56.155.59 [Sunday , 14-Nov -2010 06:27:03 +0100]

"?ets=css:203, headerjs :94, footerjs :500, domready

:843, tabs :110, ToThePointShowHideChangelog :15,

DrupalBehaviors :141, frontend :1547" 200 "http ://

driverpacks.net/driverpacks/windows/xp/x86/chipset

/10.09" "Mozilla /4.0 (compatible; MSIE 6.0;

Windows NT 5.1; SV1)" "driverpacks.net"

Then the end result — a number of transactions containing only (hierarchi-
cal) categorical attributes — looks like this:

137

(" episode:css", "duration:acceptable", "url:http ://

driverpacks.net/driverpacks/windows/xp/x86/chipset

/10.09" , "location:AS", "location:AS:China", "

location:AS:China:Shandong", "location:isp:China:

AS4837 CNCGROUP China169 Backbone", "ua:WinXP", "

ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:IE :6:0")

(" episode:headerjs", "duration:fast", "url:http ://

driverpacks.net/driverpacks/windows/xp/x86/chipset

/10.09" , "location:AS", "location:AS:China", "

location:AS:China:Shandong", "location:isp:China:

AS4837 CNCGROUP China169 Backbone", "ua:WinXP", "

ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:IE :6:0")

(" episode:footerjs", "duration:acceptable", "url:http

:// driverpacks.net/driverpacks/windows/xp/x86/

chipset /10.09" , "location:AS", "location:AS:China

", "location:AS:China:Shandong", "location:isp:

China:AS4837 CNCGROUP China169 Backbone", "ua:

WinXP", "ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:

IE :6:0")

(" episode:domready", "duration:acceptable", "url:http

:// driverpacks.net/driverpacks/windows/xp/x86/

chipset /10.09" , "location:AS", "location:AS:China

", "location:AS:China:Shandong", "location:isp:

China:AS4837 CNCGROUP China169 Backbone", "ua:

WinXP", "ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:

IE :6:0")

(" episode:tabs", "duration:slow", "url:http ://

driverpacks.net/driverpacks/windows/xp/x86/chipset

/10.09" , "location:AS", "location:AS:China", "

location:AS:China:Shandong", "location:isp:China:

AS4837 CNCGROUP China169 Backbone", "ua:WinXP", "

ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:IE :6:0")

(" episode:ToThePointShowHideChangelog", "duration:

acceptable", "url:http :// driverpacks.net/

driverpacks/windows/xp/x86/chipset /10.09" , "

location:AS", "location:AS:China", "location:AS:

China:Shandong", "location:isp:China:AS4837

CNCGROUP China169 Backbone", "ua:WinXP", "ua:WinXP

:IE", "ua:WinXP:IE:6", "ua:WinXP:IE :6:0")

(" episode:DrupalBehaviors", "duration:acceptable", "

url:http :// driverpacks.net/driverpacks/windows/xp/

138

x86/chipset /10.09" , "location:AS", "location:AS:

China", "location:AS:China:Shandong", "location:

isp:China:AS4837 CNCGROUP China169 Backbone", "ua:

WinXP", "ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:

IE :6:0")

(" episode:frontend", "duration:slow", "url:http ://

driverpacks.net/driverpacks/windows/xp/x86/chipset

/10.09" , "location:AS", "location:AS:China", "

location:AS:China:Shandong", "location:isp:China:

AS4837 CNCGROUP China169 Backbone", "ua:WinXP", "

ua:WinXP:IE", "ua:WinXP:IE:6", "ua:WinXP:IE :6:0")

As you can see, this single Episodes log file line results in eight transactions.
The careful reader will have noticed this matches the number of episodes
in the original Episodes log file line. More specifically, each episode gets
its own transaction, along with its corresponding discretized speed and all
request metadata (URL, location, ISP, platform, browser). (Note that this is
a simple example; in the actual implementation, the HTTP status code is also
included if it’s not a 200 status code21 and a ua:isMobile item is included in
the transaction if it’s a mobile user agent.) This is because we want to find
associations for specific episodes’ speeds. Hence we need a transaction for
each episode with its speed, plus all possible circumstances (environmental
factors) that can cause this particular speed. On these resulting transactions,
we can then apply association rule mining.

10.2.6 Performance

On my 2.66 GHz Core 2 Duo machine, I’m able to achieve over 4,000 parsed
& processed lines per second, resulting in ±40,000 transactions.

Memory Consumption

While performing the calculations for a ±50,000 lines long Episodes log file,
memory consumption reaches an all-time high of ±51 MB, but upon com-
pletion it drops to ±21 MB, which corresponds to the memory consumed by
QBrowsCap’s and QGeoIP’s in-memory caches, plus the Qt libraries.

21The reason for omitting 200 status codes is simple: 200 is the default status code
(when all went well) and does not reveal anything interesting.

139

10.3 Analytics — Phase 1

Explaining the FP-growth algorithm [61] in detail would lead us too far.
Plus, it already was assumed22 in the explanation of FP-Stream [58] that the
reader is already familiar with this algorithm! Hence, we shall jump right in
to the implementation details.

10.3.1 Information Representation

The Analytics module receives a list of transactions from EpisodesParser

(see section 10.2) that forms one batch, where each transaction is a list of
strings (QList<QString>) and the list of transactions is thus a list of lists
of strings (QList< QList<QString> >).

These are then converted into a more efficient format (i.e. one that con-
sumes less memory): instead of storing each item in a transaction as a string
(QString), only a numeric identifier is stored. This identifier only consumes
32 bits (but could be changed to use only 8 or 16 bits or even 64 bits by
changing a single line of code, depending on how many unique items you
need to support), which equates to 4 bytes versus the many more bytes con-
sumed by a QString23. To be able to map the numeric identifiers back to
their corresponding items, a hash table is maintained that provides that nec-
essary lookup ability.
Hence, each transaction is converted into a more efficient representation
(QList<QString> → Transaction = QList<Item>24).

This more efficient representation is used everywhere from this point onwards:
in the FP-Tree (FPTree), each node (FPNode) stores only the ItemID and
SupportCount.

22See footnote 5 on page 43.
23QString stores strings in Unicode, where each character consumes 16 bits. Plus, it

carries some overhead due to its support for implicit sharing — which we can’t take ad-
vantage of. So, for a common item such as episode:pageready, 17 characters×16 bits =
272 bits = 34 bytes as opposed to the 4 bytes consumed by 32-bit numeric item identifiers
— and that doesn’t even include QString’s overhead.
One could argue that using regular char arrays would lead to more efficient memory usage,
and that would be correct, but in the example above, that would still require 17 bytes of
memory as opposed to 4. Hence a numeric identifier still makes more sense.
Finally, since each string is stored only once (in a hash table), the possible savings from
storing these strings as char arrays instead of QStrings are negligible, so we can opt for
the more convenient option: QString.

24Note that Transaction equates to QList<Item> and not QList<ItemID>, because
this simplifies the building of conditional FP-Trees for reasons to detailed to explain here.

140

The frequent itemsets that are distilled from the FP-Tree are stored in
FrequentItemsets, which contain a list of ItemIDs (i.e. the itemset that
is frequent) and a SupportCount that describes the frequency.

Finally, these frequent itemsets are then mined for association rules. The
resulting association rules are stored in AssociationRules, which stores two
lists of ItemIDs: one for the rule antecedent and one for the rule consequent,
but also a float that indicates the confidence of this association rule.

Hence, these are the relevant types, which should all be self-explanatory:

/∗∗
∗ Generic data mining t ype s .
∗/

// Supports 2ˆ32 ∗ d i f f e r e n t ∗ i tems . Upgradable to qu in t64 .
typedef quint32 ItemID ;
// Larges t suppor ted va lue f o r qu in t32 .
#define ROOT ITEMID 4294967295
typedef QString ItemName ;
// Supports 2ˆ32 count . Upgradable to qu in t64 .
typedef quint32 SupportCount ;
#define MAX SUPPORT 4294967295
typedef QHash<ItemID , ItemName> ItemIDNameHash ;
typedef QHash<ItemName , ItemID> ItemNameIDHash ;
struct Item {

ItemID id ;
SupportCount supportCount ;

} ;

/∗∗
∗ Generic data mining conta iner t ype s .
∗/

typedef QList<ItemID> ItemIDList ;
typedef QList<Item> I temList ;
typedef QList<Item> Transact ion ;
struct FrequentItemset {

ItemIDList i t emset ;
SupportCount support ;

} ;
struct Assoc ia t ionRule {

ItemIDList antecedent ;
ItemIDList consequent ;
f loat con f idence ;

} ;

141

10.3.2 Program Flow

The following settings influence the program flow:

• minimum support σ, e.g. 0.1 (user-configurable)

• minimum confidence, e.g. 0.6 (user-configurable)

• positive frequent itemset constraints: either episode:* or duration:slow
must be present, since we want to find association rules about slow
episodes (currently hardcoded)

• positive association rule consequent constraint: duration:slow must
be present (currently hardcoded)

First Pass: Gather Item Frequencies

The FP-Growth algorithm scans all transactions (which each consist of a
number of items) in the current batch (in my implementation: FPGrowth::

scanTransactions()) and while doing so, it maintains a mapping of memory-
efficient ItemIDs to ItemNames (which are just an alias25 for QStrings — see
the earlier program listing).

Still while scanning the transactions, it stores the frequency of each item in
a transaction in a hash named frequentSupportCounts (QHash<ItemID,
SupportCount>) and upon completing the scan of all transactions in the
batch, it discards all infrequent items from this hash and creates an ordered
list (an ItemIDList) of all frequent items sorted by descending frequency
(which is a synonym for support) named sortedFrequentItemIDs. This list
will later be used to optimize the order of items within transactions.

Second Pass: Build FP-Tree

After this initial scan (which forms the first pass over the data set), we build
the FP-Tree26 (which is in fact a prefix tree; some of you may know this as
the trie data structure [86]), which effectively compresses the data that needs
to be stored. In my implementation, FPGrowth::buildFPTree() performs
this task. An FP-Tree is designed to store “frequent patterns”, which is just
another name for “frequent itemsets”.

25A typedef, actually.
26“FP-Tree” is short for “Frequent Pattern Tree”.

142

By ensuring that the order of items (ItemIDs, to be accurate) within the fre-
quent patterns is always the same by ordering them by descending frequency
(which we can thanks to the frequentSupportCounts hash from the initial
pass), all frequent itemsets containing the most frequent item A will always
have A as the first item27. This is an optimization I added myself.
Hence, even if there are a million frequent itemsets that contain item A, there
will only be one node in the FP-Tree for A: this is the compression happening.
When multiple frequent itemsets correspond to a single node in the FP-Tree,
their supports will be summed and stored in this node in the FP-Tree.

Grow Frequent Itemsets from FP-Tree

When the FP-Tree data structure has been built, everything is in place to effi-
ciently mine frequent itemsets. Frequent itemsets are extracted in a bottom-
up fashion, through a divide and conquer approach by FPGrowth::generate

FrequentItemsets(): it first looks for frequent itemsets ending in E (i.e.
with the suffix E), then DE, etc. Then it looks for frequent itemsets ending
in D, then CD, etc. After that, it looks for frequent itemsets ending in C, then
BC and finally ABC.

This growing of smaller frequent itemsets into larger frequent itemsets is
also where the name of the algorithm comes from: FP-Growth stands for
Frequent Pattern Growth.

It can do this efficiently by only looking at parent nodes of the nodes corre-
sponding to the current suffix’s first item.

Note that while generating these frequent itemsets, the frequent itemset con-
straints are checked. Thus, only frequent itemsets that match these con-
straints are accepted. On top of that, the search space is pruned based
on these constraints: given a frequent itemset (which forms the suffix for
the next recursion level) plus the prefix paths that will form the condi-
tional tree, the next recursion level is only entered when the combination
(frequent itemset, prefix paths) has the potential to match the constraint (in
our case: when either episodes:* or duration:slow is present).
For details about this optimization, see section 10.3.3.

27This of course requires that an itemset is not really a set, but a list, because by
definition there is no order in a set.

143

Mining Association Rules from the Generated Frequent Itemsets

A straightforward implementation of the Apriori algorithm is used to perform
the actual association rule mining.

However, it proved tricky to calculate the support of candidate association
rule antecedents when constraints are being used. See section 10.3.4 for
details about how this obstacle was overcome.

10.3.3 Optimizations

Item IDs instead of Item Names

Instead of passing around (huge amounts of) strings (i.e. item names) all
the time, it would be far more efficient to simply pass around identifiers (i.e.
item IDs) that correspond to these strings. This leads to less memory usage
and to faster execution, because less data needs to be passed around.

See section 10.3.1 for details.

Ordering Items in the Transactions

By always ordering items in the same way (i.e. ordering them by descending
frequency, as described in section 10.3.2), the density of the tree, and thus
the compression rate, is maximized.

In the implementation, this task is performed by FPGrowth::optimizeTransaction().

Discarding Items in the Transactions

Since association rules can (by definition) only be derived from frequent
itemsets and frequent itemsets (again by definition) cannot contain infrequent
items, it is easy to see that infrequent items can be dropped from transactions
even before they are inserted into the FP-Tree.
This is such an obvious optimization that I don’t understand why it is not
included in the original FP-Growth paper.

Specifically, thanks to the first pass over the data set, it is possible to know
which items are infrequent and which are not. In the second pass over the
data set, the FP-Tree is built. While doing so, infrequent items can safely
be discarded from each transaction.

144

After implementing this optimization, I came across the FP-Bonsai paper
[88], which also mentions this optimization among others (these other opti-
mizations do not apply to my implementation of FP-Growth, but to imple-
mentations with types of constraints irrelevant to my master thesis).

In the implementation, this task is also performed by FPGrowth::optimize

Transaction().

Conditional FP-Trees

While generating frequent itemsets from the FP-Tree, one must generate
subtrees — these are called “conditional FP-Trees”. In the original FP-
Growth paper, it is suggested to use complex operations over these trees.
However, in my implementation, this happens far more efficiently: the prefix
paths (i.e. the paths from the current prefix item’s nodes to the root node
— this concept is explained in detail in the FP-Growth paper) are extracted
as regular transactions (which already contain the correct support counts for
building the conditional FP-Tree) and these are inserted in a new FP-Tree.
This is far less complex and thus faster.
This seemed a logical and even trivial optimization to me.

After implementing it like this, I accidentally stumbled upon a paper [87]
that describes exactly the approach I followed; in this paper they called their
variation “FP-Growth-Tiny”. In their conclusion they report to consume 2.4
times less memory and a performance improvement of 28.5% over the original
FP-Growth algorithm.

However, they still worked with strings instead of identifiers. Hence, it is
reasonable to expect that my implementation has an even better memory
consumption improvement, as well as a higher performance.

Frequent Itemset Search Space Pruning through Constraints

While I could have gone for the simple approach towards implementing con-
straints, i.e. by generating all possible frequent itemsets and then checking
whether they match the constraints, I decided to figure out how to push con-
straint matching as deep into FP-Growth as possible, to achieve maximum
efficiency. This means less itemsets have to be checked to see if they are
frequent: the selectivity of the constraints are pushed deep into the process.

This is how the algorithm can be integrated with existing FP-Growth imple-
mentations:

145

Algorithm 1 Frequent itemset search space pruning through constraints,
integrated with the original FP-Growth algorithm.

1 l e t F be a f r equent i t emset found by the r e g u l a r FP−Growth
algor i thm ;

2 l e t C be the c o n s t r a i n t s that must be matched f o r a
f r equent i t emset to be accepted ;

3 l e t R be the s e t o f accepted f r equent i t emse t s ;
4 i f F matches C
5 then {
6 add F to R;
7 }
8
9 l e t P be the p r e f i x paths f o r F ;

10 l e t S be the support counts f o r the unique items in P;
11 i f F+S matches C
12 then {
13 ente r the next r e c u r s i o n l e v e l with F as the s u f f i x ;
14 }
15 e l s e {
16 gene ra t ing f r equent i t emse t s f o r t h i s branch i s

complete ;
17 }

Clearly, the remaining search space is only searched for additional frequent
itemsets if it has the potential to match these positive constraints. This
potential is determined by checking whether the constraints are matched
by the current frequent itemset (which will be a suffix for future frequent
itemsets) and the ”prefix paths support counts”28 simultaneously, that is, if
either the frequent itemset matches the constraints or the prefix path support
counts match the constraints. This makes sense, because prefix paths (and
thus the corresponding prefix paths support counts) indicate possible future
extensions of the current frequent itemset. Thus, we only continue the search
if it is possible that some offspring of the current frequent itemset will be

28The “prefix paths” are the previously mentioned parent nodes, i.e., it is looking at all
paths to the root node of the FP-Tree from all nodes in the FP-Tree that contain the first
item of the frequent itemset. This first item is in fact the prefix that was prepended to the
suffix, thus resulting in the current frequent itemset. Hence the name “prefix paths” makes
sense. “prefix paths support counts”, then, refers to all unique items’ support counts in
these prefix paths. Put more simply, “prefix paths support counts” are the support counts
of all possible items that may be added to the growing frequent itemset, and hence they
represent the future search space

146

able to match the constraints, or in other words, if it has potential.

4 kinds of item constraints are supported:

• CONSTRAINT POSITIVE MATCH ALL: all defined items must be present

• CONSTRAINT POSITIVE MATCH ANY: at least one of the defined items
must be present

• CONSTRAINT NEGATIVE MATCH ALL: none of the defined items must be
present

• CONSTRAINT NEGATIVE MATCH ANY: at least one of the defined items
must not be present

See FPGrowth::generateFrequentItemsets() in the implementation.

We can put a positive item constraint on duration:slow during frequent
itemset generation. This strongly limits the search space for possible frequent
itemsets, and thus results in a major speed-up.

This also implies that the execution speed also depends on the user’s defini-
tion of “slow”.

We want rules always to be about episodes. Hence we can also put a positive
wildcard item constraint of episodes:* on frequent itemsets. This further
limits the search space for possible frequent itemsets.

Association Rule Search Space Pruning through Constraints

We can even significantly reduce the search space for association rules: since
we are looking for causes for slow episodes, we can thus require the consequent
of an association rule to contain duration:slow.

Since we already required duration:slow to be in the frequent itemset dur-
ing the frequent itemset generation step, this item exists in every frequent
itemset. However, instead of testing all possible association rules’ confidence,
we now only have to test one possible association rule’s confidence per fre-
quent itemset!

Also, we want some episode (episode:*) to be in the antecedent of the rule.
Since we’ve already required episode:* to be in the frequent itemset and
we’ve only allowed duration:slow in the consequent, episode:* must be
in the antecedent!

147

10.3.4 Obstacles

Adjusted Minimum Absolute Support Formula

The absolute minimum support is calculated as follows: minSupAbs =
minSupRel×batchSize÷ transactionsPerEvent, whereas the expected cal-
culation is probably minSupAbs = minSupRel × batchSize. The reason we
need to do this, is that each event (i.e. each page view) is mapped to multiple
transactions (one for each episode).

We must interpret minSupRel as follows: “a frequent itemset is frequent if
its occurs minSupRel of the time”. For example, an itemset is frequent if it
occurs 5% of the time. Suppose there are 1000 page views and 10 episodes
per page view on average. That means there 10.000 transactions will have
been generated. This now means that an itemset must occur minSupAbs =
0.05×10.000 = 500 times. Since there are only 1,000 page views, each episode
can only occur 1,000 times at most, so clearly, our calculation must be wrong,
since we are now requiring an effective 50% minimum support. Now, if we
use the adjusted formula, we get minSupAbs = 0.05 × 10.000 ÷ 10 = 50
times. Since 50

10.000
= 0.05 is effectively 5% minimum support, the adjusted

formula will provide us with the correct results.

Constraints

My initial implementation of FP-Growth that supposedly supported con-
straints was completely wrong: I had assumed that if I simply ignored trans-
actions that didn’t contain duration:slow, I would still get the correct re-
sults. This is unfortunately wrong: while it does find the correct frequent
itemsets (i.e. only those that contain duration:slow, since that is a require-
ment for the rule consequents), it is incapable of determining the correct sup-
port for the antecedent, because the FP-Tree does not contain the support
(frequencies) for episodes that were not slow. Hence, my association rule
miner would find association rules that all had 100% confidence.

My promotor pointed me to a paper on constrained frequent pattern mining
by one of the authors of FP-Growth [89] as well as a paper he co-authored
[90]. Both of which unfortunately turned out to not provide a solution for the
main obstacle. They both only focused on how to efficiently mine patterns
(i.e. frequent itemsets), not on how to do it in such a way that would still
allow for the confidence of association rules to be calculated (i.e. they did
not discuss how to calculate the support of antecedents).

148

I searched for many more potentially relevant papers and read them all, but
unfortunately, none of them could provide the answer I sought.

However, the former paper did contain a very useful overview of the various
types of constraints. In my own implementation I had called the constraints
that I supported “filters”, but apparently my “filters” corresponded to what
the literature describes as “positive item constraints”29.

In the next part of this section, it is explained how I managed to work around
this problem.

Association Rule Mining after Constrained Frequent Itemset Min-
ing

Association rules are accepted if their confidence is sufficiently high, we need
the support of the antecedent, and not just the support of all items in the
frequent itemset from which the association rule is being generated:

sup(X ⇒ Y) =
sup(X ∪ Y)

sup(X)

When constraints are not being used, all frequent itemsets are calculated.
This implies that frequent itemsets that will later become association rule
antecedents are also generated30. Thus, to retrieve the support of an an-
tecedent, all that needs to be done is looking up the antecedent in the set
of frequent itemsets generated by FP-Growth. One can then calculate the
confidence of the candidate association rule and decide whether to accept or
discard it.

However, since we require frequent itemsets to match the constraints to be
accepted, this implies that some antecedents may not have been generated.
E.g. suppose the candidate association rule

{episodes : css, location : EU} ⇒ {duration : slow}

is generated from the frequent itemset

{duration : slow, episodes : css, location : EU}
29From [89]: “An item constraint specifies what are the particular individual or groups

of items that should or should not be present in the pattern”, hence a “positive item
constraint” is a constraint that defines which item(s) should be present.

30After all, antecedents are frequent too: subsets of frequent itemsets are by definition
frequent!

149

Then the antecedent is

{episodes : css, location : EU}

It then depends on the order in which the frequent itemset (from which
the candidate association rule was distilled) was built by the FP-Growth
algorithm whether the frequent itemset that corresponds to the antecedent
of the candidate association rule also has been generated, and thus whether
its support is readily available. Suppose

{duration : slow, episodes : css, location : EU}

was generated in the following order:

{duration : slow}
↓

{duration : slow, episodes : css}
↓

{duration : slow, episodes : css, location : EU}

where each intermediate frequent itemset was also added to the set of fre-
quent itemsets. Then, clearly, the frequent itemset that corresponds to the
candidate association rule antecedent, {episodes : css, location : EU}, was
not generated, and thus its support is not readily available.
The question then becomes: how can we retrieve the support of an an-
tecedent, or really, any frequent itemset?

Fortunately, we know exactly which frequent itemset we’re looking for (i.e.,
the antecedent’s itemset). This allows us to traverse the FP-Tree to get ex-
actly the data we need.
The algorithm employed is identical to the step in the program flow in which
frequent itemsets are grown from the FP-Tree, but this time we do not have
to generate all potential frequent itemsets: as mentioned before, we can sim-
ply traverse the FP-Tree to retrieve only the data we need.
For full details, see FPGrowth::calculateSupportCount() in the implemen-
tation.

10.3.5 End Result

The end result is that a chunk of 4,000 Episodes log lines is parsed and
mapped to many transactions. These transactions are then mined for fre-
quent patterns through FP-Growth. Here is a part of the output over a
sample file, with minSup = 0.1 and minConf = 0.6:

150

STARTING CHUNK

Processed chunk of 4000 lines!

Transactions generated: 37874

Frequent itemset mining complete: 38 found

Association rule mining complete: 1 found

({ episode:backend (36) =1674} => {duration:slow (16)

=1083} (conf =0.646953))

STARTING CHUNK

Processed chunk of 4000 lines!

Transactions generated: 37899

Frequent itemset mining complete: 22 found

Association rule mining complete: 1 found

({ episode:backend (37) =1702} => {duration:slow (15)

=1023} (conf =0.601058))

If we would decrease the minimum confidence, the number of association
rules that will be found will of course increase significantly. The important
point is that we have a working implementation of association rule mining
with support for constraints. However, it is only capable to work over static
data sets, while we need it to work over streams of data. That is what we
will focus on in the second phase of the implementation of the Analytics

module.

10.3.6 Performance

On my 2.66 GHz Core 2 Duo machine, I am able to mine the association
rules of a 51,927-line long sample Episodes log file per chunk of 4,000 lines at
over 1,500 lines per second or over 16,500 transactions per second (and that
includes the parsing and processing of EpisodesParser — see section 10.2)
on my 2.66 GHz Core 2 Duo machine.

Memory Consumption

While performing the calculations for a ±50,000 lines long Episodes log file,
memory consumption reaches an all-time high of ±61 MB, but upon com-
pletion it drops to ±25 MB, which corresponds to the memory consumed by
QBrowsCap’s and QGeoIP’s in-memory caches, the Qt libraries, plus some

151

data cached by the Analytics module.
When you compare this to the memory consumption of EpisodesParser, it is
clear that the memory consumption by FP-Growth plus the association rule
miner is very small; and that there are likely no memory leaks whatsoever.

10.4 Analytics — Phase 2

Phase two consists of implementing the FP-Stream algorithm [58], which also
relies on the FP-Growth algorithm [61] implementation that was completed
in phase 1 (see the previous section). In essence, this phase only adds the
capability to mine over a stream of data. While that may sound like it is
not much, the added complexity of achieving this turns it into a fairly large
undertaking.

10.4.1 Information Representation

Much of the data and many of the data structures used by FP-Growth are
also used by FP-Stream. Hence, this explanation is brief, since there is not
much to explain.

Tilted Time Window

A key data structure required for an FP-Stream implementation is a tilted
time window. One can opt for either a natural tilted time window model or
a logarithmic tilted time window (see section 3.2.1 in the literature study for
details, specifically figure 3).

In the context of my thesis, a natural tilted time window model makes more
sense, since it allows you to mine frequent itemsets over the last week, the
last month, and so on, whereas a logarithmic tilted time window model would
only allow for the last hour, the last 2 hours, the last 4, 8, 16, 32 hours, and
so on. These windows are clearly harder to interpret the results for in the
context of WPO analytics than a natural tilted time window.
I opted for a natural tilted time window with a precision of a quarter of an
hour that would keep the data of up to 1 year ago. Given granularities of a
quarter, an hour, a day, a month and a year31, that results in a grand total
of 4 + 24 + 31 + 12 + 1 = 72 units of time. For each such unit, there is a
bucket in the TiltedTimeWindow. That is, there are 4 quarter buckets, 24

31Thus, there is a “quarter” granularity, an “hour” granularity, and so on.

152

hour buckets, 31 day buckets, 12 month buckets and 1 year bucket. The first
quarter bucket corresponds to the last quarter, the second quarter bucket
corresponds to the last but one quarter (i.e. the quarter a quarter ago), and
so on.32

The FP-Stream paper also describes how to prune data that will no longer
be needed for the resulting frequent itemsets to be sufficiently accurate. This
continuously (with every new batch of transactions that arrives) ensures that
stale data is deleted from memory, and thus keeping memory consumption
low.

PatternTree

Another key data structure is the Pattern Tree, which includes a Tilted-
TimeWindow in each node. You may recall from the FP-Growth implemen-
tation that there was another tree data structure, called FP-Tree. Well, in
this phase of the implementation I reused the class I developed for the nodes
in the FP-Tree (FPNode), but refactored it into a template class. For FP-
Growth’s FP-Tree, I thus use FPNode<SupportCount> and for FP-Stream’s
PatternTree, I used FPNode<TiltedTimeWindow>.

The support of patterns (frequent itemsets) stored in a PatternTree instead
of a FPTree should be interpreted differently. The patterns can be read in
the same way, but each node now only contains the support for the pattern
defined by that node33, instead of a cumulative support that also includes
the support of the frequent itemsets beneath it (i.e., its supersets).

This class was trivial to implement, since most of the complex logic resides
in the TiltedTimeWindow class.

10.4.2 Program Flow

The following settings influence the program flow:

• minimum support σ, e.g. 0.1 (user-configurable)

• minimum confidence, e.g. 0.6 (user-configurable)

32Note that the number of units of time, and how each granularity is defined can easily
be altered by changing a few hardcoded parameters!

33A pattern is defined as the items encountered when traversing the tree from the root
node to a given node.

153

• maximum support error ε, e.g. 0.05 (user-configurable)

• positive frequent itemset constraints: either episode:* or duration:slow
must be present, since we want to find association rules about slow
episodes (currently hardcoded)

• positive association rule consequent constraint: duration:slow must
be present (currently hardcoded)

• tilted time window specification (currently hardcoded as described in
section 10.4.1, but can easily be changed)

Changes To EpisodesParser and FP-Growth

Some changes had to be made to support FP-Stream:

• EpisodesParser had to be updated to send out a batch for each 15-
minute window (i.e. each quarter), instead of simply each 4,000-line
chunk

• Refactored FPNode into a template class. This allows FPNode to be
reused for the PatternTree data structure that is required for the FP-
Stream algorithm. The existing codebase uses FPNode<SupportCount>,
for FP-Stream, we can use FPNode<TiltedTimeWindow>.

• Make FPGrowth’s sortedFrequentItemIDs a pointer, and make the
address it should point to a parameter of FPGrowth. This allows us to
reuse this over multiple FPGrowth instances. This is in fact FP-Stream’s
f list parameter.

• Instead of FPGrowth::generateFrequentItemsets() being a synchro-
nous (blocking) call, make it an asynchronous (non-blocking) call, with
minedFrequentItemsets() and branchCompleted() signals to let an-
other object know when a frequent itemset was mined (along with
sufficient metadata to let that thread itself send a signal to continue
exploring the supersets of that frequent itemset) and when a branch of
itemsets was completed (to let another object know when the exploring
is completed), as well as a generateFrequentItemsets() slot to let
another object (i.e. the FPGrowth instance) explore the supersets of a
frequent itemset.
An optional parameter allows FPGrowth to still run in blocking (syn-
chronous) mode, thus maintaining backwards compatibility.

154

Initial Batch

The first batch is treated differently than the rest: it is used as an initializa-
tion step. An empty f list is created and passed to an FPGrowth instance,
which mines frequent itemsets that have ε as their minimum support. The
FPGrowth instance then applies the FP-Growth algorithm (with support for
constraints, as in phase 1) to this initial batch, thereby creating an ordering
of the items by decreasing frequencies and storing this in f list, which will
be reused for subsequent batches. All frequent itemsets that are found by
the FP-Growth algorithm34 are then stored in the PatternTree.35

Subsequent Batches

The initial batch is very uninteresting, since it is essentially identical to an
execution of the FP-Growth algorithm. Now that we have arrived at the sub-
sequent batches, the FP-Stream algorithm becomes much more interesting.

As a subsequent batch is received, an FPGrowth instance is created (and
passed ε as the minimum support and the previously created f list). In
the first pass of the FP-Growth algorithm, the transactions are scanned and
frequent items that are not yet in f list are added to it, in descending
order (i.e. new frequent items are sorted descendingly and then appended to
f list, thus maintaining f list’s previous order, only extending it).

Each time FPGrowth encounters a new frequent itemset, the following hap-
pens:

1. its constraints are checked, the result is stored in the boolean
frequentItemsetMatchesConstraints

2. it is then checked by FPGrowth::considerFrequentItemsupersets()

whether there are supersets that can be mined, i.e., if a conditional FP-
Tree can be found on which the mining can continue; if there is not,
NULL is returned, otherwise it is checked whether the combination of
the currently found frequent itemset plus the items in the conditional
FP-Tree have the potential to match the constraints; if this is not the
case, NULL is returned, otherwise the conditional FP-Tree is built and

34Note that since all frequent itemsets are stored, we can call FPGrowth in blocking
(synchronous) mode.

35The FP-Stream paper explains this particularly poorly; instead of simply stating that
the FP-Growth algorithm is used for the initial batch, it provides a rough, inaccurate and
suboptimal description of FP-Growth.

155

returned (see section 10.3.3, subsection “Frequent Itemset Search Space
Pruning through Constraints” for a detailed explanation)

Now, the signal FPGrowth::minedFrequentItemset() is emitted, and it in-
cludes the following parameters:

• the frequent itemset that was found

• frequentItemsetMatchesConstraints

• the conditional FP-Tree (which may either be NULL or point to an FP-
Tree)

This signal is received in the slot FPStream::processFrequentItemset(),
which is as an exact implementation of the “FP-Streaming” algorithm (“In-
cremental update of the PatternTree structure with incoming stream data”)36

in the FP-Stream paper, with minor modifications to add support for con-
straints. This will be explained in the section about obstacles, i.e. section
10.4.4.

Frequent itemsets that match the constraints are inserted into the PatternTree
by FPStream::processFrequentItemset(). When they already exist in
the PatternTree, the corresponding TiltedTimeWindow is updated: a new
quarter bucket is filled, and when the quarter granularity’s 4 buckets are full,
they’re summarized into an hour bucket, and so on (this is explained in detail
in section 10.4.4).

Finally, the user can ask to retrieve the frequent itemsets over any desired
time range, after which the PatternTree will be traversed and each visited
node’s TiltedTimeWindow will be asked to return the total support for that
time range (which maps to a range of buckets in the TiltedTimeWindow).
This end result is explained in more detail in section 10.4.5.

10.4.3 Optimizations

No optimizations to the FP-Stream algorithm were made, except for the
added support for constraints (explained in the next section). However, that
is more of an extension than an optimization.

36The FP-Stream paper introduces the Pattern Tree data structure, and when that
is done, it calls it the “FP-Stream” data structure, which makes no sense at all. The
FP-Growth paper also does not have an “FP-Growth” data structure. Hence, I’ve always
referred to the Pattern Tree data structure as “Pattern Tree” and not “FP-Stream”, which
the original paper strangely does wrong.

156

Of course, some of the optimizations carry over from FPGrowth to FPStream,
for example the use of item IDs instead of full-blown strings — see section
10.3.3 for details.

10.4.4 Obstacles

Maximum Support Error ε

The FP-Stream paper calls ε “maximum support error”, but this is a very
misleading name. Due to its name, one would expect that σ − ε would then
become the effective minimum support (i.e. some subfrequent itemsets are
also stored in the Pattern Tree by FP-Stream, since they have a relatively
high chance of becoming frequent in the future, as the data stream continues;
this prevents them from being pruned too early). But in effect, it acts iden-
tically to the regular minimum support: it really is a “temporary override”
for σ. That is, ε is the minimum support for a (sub)frequent itemset to be
accepted into the PatternTree and σ is the minimum support when mining
frequent itemsets from the PatternTree.

Thus, σ ≥ ε always holds, because otherwise frequent itemsets would be
pruned even before they ended up in the PatternTree. Depending on how
much smaller ε is than σ, more or less subfrequent itemsets will end up in
the PatternTree, allowing them to become frequent over time, but resulting
in more memory being used. Finally, when σ = ε, no subfrequent itemsets
are stored at all, and thus only the “truly frequent” frequent itemsets of each
batch will be found and stored in the PatternTree.

Clearly, “maximum support error” is a counterintuitive name. A suggested
alternative name is “initial minimum support” or “Pattern Tree minimum
support”.

Tilted Time Window

Its core functionality is relatively easy to implement, but the tail pruning
of TiltedTimeWindow is very hard. The FP-Stream paper only deals with
some details of the logarithmic window approach, and none of the details of
the natural window approach.

Amongst others, it assumes that each bucket of transactions to process is of
equal size, which is only true if an equal amount of data is generated for each
period. Clearly, this is not true in the case of web visits and thus web logs.
This assumption is wrong, even for logarithmic window sizes.

157

But what is worse, is that there is zero explanation at all about how to
deal with information that is correlated to time. I.e. instead of just blindly
processing the data, we want each window in a natural tilted-time window
model to correspond to events that actually occurred during that period of
time. In other words: we must ensure that all tilted time windows remain in
sync. How this can be achieved, is explained nowhere.37

A related question is: how does tail pruning affect this? (Assuming we can
manage to keep the tilted time windows in sync.) Because keeping tilted
time windows in sync and the implementation of tail pruning can affect one
another: tail pruning can cause tilted time windows to get out of sync.

But first, let me explain how I implemented the summarizing of the buckets
in one granularity (e.g. quarter) to the next granularity (hour) when one
granularity is full (it is said to have reached its “tipping point”).
Suppose the 4 quarter buckets of a TiltedTimeWindow are filled with Support

Counts (7, 9, 8 and 6 respectively) and all other buckets are empty (situation
S0).
Now, we must insert another SupportCount (5) — for the next quarter that
has passed. But there are only 4 quarters in an hour, so now it is time
to summarize (sum, really) the SupportCounts in the 4 quarter buckets and
store the result in the first hour bucket. Hence we sum the 4 quarter buckets,
reset them (situation S1) and store the resulting sum in the first hour bucket
(situation S2). Then, we can insert the new SupportCount in the first quarter
bucket.

S0 =
0 1 2 3 0 1 2 . . .
7 9 8 6 ∅ ∅ ∅ . . .

S1 =
0 1 2 3 0 1 2 . . .
∅ ∅ ∅ ∅ 30 ∅ ∅ . . .

S2 =
0 1 2 3 0 1 2 . . .
5 ∅ ∅ ∅ 30 ∅ ∅ . . .

I did manage to find a way to implement the TiltedTimeWindow class in
such a way that tail pruning cannot result in TiltedTimeWindows to get out
of sync. There are two aspects that lead to the solution:

1. The PatternTree class maintains which quarter of an hour we are cur-
rently at (we always process a batch of transactions which all occurred

37Possibly the authors considered this a trivial implementation detail.

158

in the same quarter, so all TiltedTimeWindows must be at the same
quarter bucket after a batch of transactions has been processed), call
this c, with c ∈ {0, 1, 2, 3}. When a new (or empty) TiltedTimeWindow
receives a SupportCount to store, we will then insert c zeros into this
TiltedTimeWindow and then insert the actual SupportCount.
This will make sure that newly started TiltedTimeWindows are always
in sync. However, we still need to make sure that tail pruning cannot
make them go out of sync.

2. The FP-Stream paper claims we can drop tail sequences simply when
it holds that: cumulative minimum support is not met and cumula-
tive minimum approximation frequency is not met (see the FP-Stream
paper [58] for details). When we implement tail pruning like this, how-
ever, the various TiltedTimeWindows are bound to get out of sync.
This is easy to see. The quarter granularity will always stay in sync
thanks to aspect 1. The hour granularity, however, will not, unless we
implement the tail pruning in a different way than described in the
paper. Suppose we did implement it like in the paper and suppose we
had two TiltedTimeWindows that we want to keep in sync: A and B.
Suppose that both A’s and B’s quarter and hour buckets are all full.
That is, A and B both look like this:

0 1 2 3 0 1 2 . . . 23 0 . . .
q0 q1 q2 q3 h0 h1 h2 . . . h23 ∅ . . .

Next, suppose that B is tail pruned according to the method described
in the FP-Stream paper. Suppose only its first two hour buckets re-
main.
In the new situation, A still looks the same, but B now looks like this:

0 1 2 3 0 1 2 . . . 23 0 . . .
q0 q1 q2 q3 h0 h1 ∅ . . . ∅ ∅ . . .

There still is no problem, the data is still perfectly in sync: the first
and second hour bucket in B correspond to those in A, and B simply
has no data for the remaining 22 hour buckets.
Let us suppose that we now need to add another SupportCount. Since
the quarter buckets are full, that means they will have to be summa-
rized into an hour bucket. Now there is a problem: in A, all 24 hour
buckets are full, which means they will have to be summarized into the
first day bucket. Then, the hour buckets all become empty, and the
quarter buckets can be summarized into the first hour bucket; A now

159

looks like this:

0 1 2 3 0 1 2 . . . 23 0 . . .
q0 ∅ ∅ ∅ h0 ∅ ∅ . . . ∅ d0 . . .

But, B’s hour buckets are not all filled, only 2 of them are, due to
the earlier tail pruning. Thus, there is still plenty of room in the hour
granularity. Hence, B now looks like this:

0 1 2 3 0 1 2 . . . 23 0 . . .
q0 ∅ ∅ ∅ h0 h1 h2 . . . ∅ ∅ . . .

It should be clear that A and B are now out of sync. Their quarters
are still in sync, thanks to insight 1. But the hour buckets are severely
out of sync. A’s h0 contains the first hour of the second day, whereas
B’s h0 does too, but B’s h1 contains the first hour of the first day and
h2 the second hour of the first day. Clearly, when the hour buckets of
B would be summarized, we would get a nonsense result; the result
would not be the sum of the SupportCounts of 24 consecutive hours of
a day (the second day), but of a mix of hours from days 1 and 2.
Now that we’ve analyzed the problem in-depth, a possible solution
becomes clear: the problem that we’ve just reproduced cannot occur if
tail pruning is only allowed to prune all buckets of a granularity. Thus,
that is the way I implemented it.

Constraints

FP-Stream was not designed with constraint matching in mind. A thorough
search session through related literature only lead to the discovery of a single
paper on the subject [91], but this paper unfortunately only provided trivial
extensions that I had already figured out on my own, whereas the truly
difficult thing was to also get the support of antecedents, to be able to perform
association rule mining.

In FP-Stream, whether supersets of an itemset are considered to be mined for
through FP-Growth and then included in the Pattern Tree, depends solely
on two factors:

1. the itemset must be subfrequent (meaning that it must have at least ε
support, instead of σ)

2. the corresponding node in the PatternTree must not have an empty
TiltedTimeWindow after conducting tail pruning

160

However, when adding support for constraints, it becomes obvious that these
factors are not sufficient. It is possible that:

• a frequent itemset is not accepted: if it doesn’t match the constraints,
it is not accepted

• a frequent itemset that is not accepted because it doesn’t match the
constraints, does not imply that supersets are not examined: after all,
supersets may still be frequent, and more importantly, they may be
able to match the constraints (the supersets are said to have potential)

• the above two remarks imply that there are three cases in which either
something was found (a frequent itemset that matches the constraints),
something may be found upon further mining (there is a possibility
that in the superset of this itemset, there is also or still something to
be found), or both — in the table below you’ll see that these are cases
1, 2 and 3, whereas case 4 represents the dead end, where absolutely
nothing could be found and no further work is required:

case frequent itemset conditional FP-tree explanation

1 NOT NULL NULL

frequent itemset found,
but nothing left to

explore

2 NOT NULL NOT NULL

frequent itemset found
and supersets may

contain more frequent
itemsets

3 NULL NOT NULL

frequent itemset does
not match constraints,

but supersets may
contain more frequent

itemsets that do match
the constraints

4 NULL NULL dead end

As explained in section 10.4.2, when the FP-Growth algorithm has found a
frequent itemset, the FPGrowth::minedFrequentItemset() signal is emit-
ted, and it includes the following parameters:

• the frequent itemset (pattern) that was found

• frequentItemsetMatchesConstraints

161

• the conditional FP-Tree (which may either be NULL or point to an FP-
Tree)

Now, how is support for constraints integrated with FP-Stream’s “Incremen-
tal update of the PatternTree structure with incoming stream data” algo-
rithm?
There are two major branches in this algorithm:

1. the pattern already exists in the Pattern Tree
If the pattern is already in the Pattern Tree, it is too late. Hence, we
do not need to make any changes here.

2. the pattern does not yet exist in the Pattern Tree
In this case, the FP-Stream paper states that the frequent itemset
should be added. However, I again added the additional requirement
that the pattern should also match the constraints.
When the pattern does not match the constraints, I added the following
logic to the algorithm: if the conditional FP-Tree that was passed with
the signal does not equal NULL (meaning that the search space still has
potential to match the constraints, as explained in section 10.4.2), then
its supersets will also be calculated.

The overall rationale is to ensure that the PatternTree only stores patterns
(frequent itemsets) that match the constraints, but at the same time it is
ensured that the search for those patterns is not stopped too early (by means
of the additional exploring of supersets in the second branch, when there is
potential).

This all seemed reasonable to do, and does correctly only generate frequent
itemsets that match the constraints, but as we will see in the next subsection,
it was not without (unforeseen) consequences.

Association Rule Mining after Constrained Frequent Itemset Min-
ing

You may recall the identically titled subsection in section 10.3.4. The prob-
lem described in this subsection is strongly reminiscent (and of course, cor-
related) to the problem described in that previous subsection. The solution,
however, is completely different.

When I finally got FPStream working, there was another problem. I had
always thought that once I got FPStream working, the hard part would be

162

over. But instead, it turned out that there was one small oversight with
major repercussions that me nor my thesis advisor had noticed. That small
oversight was the fact that it is in fact impossible to calculate the exact
support for rule antecedents, since they cannot match the constraints. Would
there be a work-around like there was one for an implementation of FP-
Growth that has support for constraints?

Given a hypothetical candidate association rule X ⇒ Y , we need sup(X)
and sup(X ∪ Y) to calculate the confidence of the association rule. Since
sup(X) ≥ sup(X ∪ Y) by definition, it must follow that if X ∪ Y is stored
in the PatternTree, then X must be stored in the PatternTree as well.
However, when add constraint matching to the picture, this no longer holds!

But there, a simple, yet very elegant solution exists. Its only downside is
that it will imply the storage of more data (but still less data than in the
case where no constraint matching is used before storing the data in the
PatternTree, and constraint matching is only used when mining association
rules, i.e. after mining frequent itemsets).
This solution is: if a (sub)frequent itemset’s superset has the potential to
match the constraints, then store it in the PatternTree anyway.

Let us again review the 2 branches that we altered in the previous subsection;
now we will alter them in a different way that will allow for all antecedents
to be found:

1. the pattern already exists in the Pattern Tree
If the pattern is already in the Pattern Tree, it is too late. Hence, we
still do not need to make any changes here.

2. the pattern does not yet exist in the Pattern Tree
This time, I add the frequent itemset not only when it matches the con-
straints, but also when the conditional FP-Tree does not equal NULL.
The reasoning behind this is that possible antecedents should also be
stored in the Pattern Tree (i.e. when the constraints aren’t matched,
but the conditional FP-Tree does not equal NULL and thus has poten-
tial). The supersets aren’t evaluated though, but since the antecedent
is already stored, its direct supersets will be evaluated in the next batch
(if they occur in that batch). This is exactly how the original algorithm
works.

This approach follows the “spirit” of the original algorithm more closely and
succeeds in adding support for constraints, while still allowing for association
rule mining.

163

This is how the above can be integrated with existing FP-Stream implemen-
tations:

Algorithm 2 Support for constraints integrated with the original FP-
Growth algorithm, while maintaining all possible antecedents.

1 l e t F be a f r equent i t emset found by the r e g u l a r FP−Growth
algor i thm ;

2 l e t T be the the c o n d i t i o n a l FP−Tree f o r F ;
3 l e t C be the c o n s t r a i n t s that must be matched f o r a

f r equent i t emset to be accepted ;
4 l e t P be the Pattern Tree ;
5 l e t N be the node f o r F in P;
6
7 i f (N == NULL
8 then {
9 i f (F matches C | | T != NULL)

10 then {
11 add F to P;
12 }
13 }

So now, from the perspective of FPStream, antecedents will be stored in the
PatternTree and thus we will be able to calculate the confidence of candidate
association rules.

However, one important fact was still forgotten: it depends on the order in
which frequent itemsets are mined by FPGrowth whether antecedents are also
mined! This problem was previously encountered while adding support for
constraints to the FP-Growth algorithm — see section 10.3.4.
The solution was there to simply quickly calculate the support of an an-
tecedent, which was perfectly possible thanks to the availability of the FPTree
(from which this can easily be read).
We cannot apply that same tactic here, because it is impossible to keep
every FPTree of every FPGrowth instance in memory (remember that one
FPGrowth instance is created for each batch, and upon completion this in-
stance is deleted).

Let us consider the same (brief) example again. Suppose

{duration : slow, episodes : css, location : EU}

164

was generated in the following order:

{duration : slow}
↓

{duration : slow, episodes : css}
↓

{duration : slow, episodes : css, location : EU}

where each intermediate frequent itemset was also added to the set of fre-
quent itemsets. Then, clearly, the frequent itemset that corresponds to the
candidate association rule antecedent, {episodes : css, location : EU}, was
not generated, and thus its support is not readily available.

Since we cannot keep every FP-Tree ever built in memory, there is only one
solution: ensure that the frequent itemsets are generated in such an order
that it is guaranteed that all possible antecedents will have been generated as
well. That is the key insight.

We know that the FP-Growth algorithm generates frequent itemsets in a
bottom-up fashion: it starts at the bottom of the FP-Tree, then adding each
possible prefix and recursively repeating this until the root node is reached.
Then, to ensure that all antecedents are generated, the logical thing to do is
to make sure that the association rule consequent items are the last prefixes
to be encountered. Since FP-Growth works in a bottom-up fashion, we must
simply ensure that association rule consequent items are the items at the
very top of the FP-Tree.38

Implementing this was trivial: it only required a minor modification to
FPGrowth::optimizeTransaction(): it still orders items in the transac-
tion by descending frequency, but it ensures that positive rule consequent
constraints end up at the front of the transaction. Transactions are always
passed through this method before they are inserted into the FPTree and
thus this is all that needs to be changed.

Now, the example order in which the above example is generated is as follows:

38Note that this approach only works when there is a very limited set of association rule
consequent items. In our case, this set contains only one item: {duration : slow}.

165

{episodes : css}
↓

{episodes : css, location : EU}
↓

{duration : slow, episodes : css, location : EU}

10.4.5 End Result

We now have an application that is capable of parsing Episodes log files,
mapping each Episodes log line to many transactions, mining the subfrequent
itemsets from these transactions using the FP-Growth algorithm, inserting
these in a Pattern Tree when the FP-Stream algorithm deems this fit and
then retrieving the frequent itemsets over any given time range.

The end result at any point in time is a PatternTree that contains all sub-
frequent itemsets (i.e. all itemsets with frequency ≥ ε). We can now ask for
any time range (i.e. any range [x, y] | x ≤ y | x, y ∈ [0, 71]) supported by the
buckets present in all TiltedTimeWindows to retrieve the frequent itemsets
(i.e. all subfrequent itemsets with frequency ≥ σ).

Now, if we look at the debug output of some of the batches being processed,
we can learn a lot of things:

Processed batch of 246 lines!

Transactions generated: 2395. (9.73577 transactions/event)

Avg. transaction length: 11. (26345 items in total)

Events occurred between 2010 -11 -14 06:45:09 and 2010 -11 -14

06:59:56.

PatternTree size: 1045

ItemIDNameHash size: 298

f_list size: 277

Processed batch of 258 lines!

Transactions generated: 2488. (9.64341 transactions/event)

Avg. transaction length: 11. (27368 items in total)

Events occurred between 2010 -11 -14 07:00:01 and 2010 -11 -14

07:14:59.

PatternTree size: 1261

ItemIDNameHash size: 383

f_list size: 338

166

Processed batch of 135 lines!

Transactions generated: 1282. (9.4963 transactions/event)

Avg. transaction length: 11.0062. (14110 items in total)

Events occurred between 2010 -11 -14 07:15:00 and 2010 -11 -14

07:29:52.

PatternTree size: 889

ItemIDNameHash size: 444

f_list size: 404

Noticeable properties are:

• each batch contains the transactions generated from the Episodes log
lines over a 15-minute window, this is evidenced by the timestamps

• the number of page views can vary strongly between each 15-minute
window, and thus the number of transactions per corresponding batch
varies equally strong

• the PatternTree size increases most of the time, but sometimes the
effects of pruning can be very clear: in the 3rd batch, the size decreases
significantly

• the ItemIDNameHash variable’s size (which maintains the mapping from
efficient item identifiers to their full string equivalents) is a measure of
the number of unique items encountered so far in the data stream

• the f list size can only increase, but as it gets to know most items,
the growth rate will decelerate (note that this is by definition smaller
than ItemIDNameHash’s size, since f list does not include infrequent
items and ItemIDNameHash does)

10.4.6 Performance

While it was fairly easy to describe the performance characteristics of the
EpisodesParser and Analytics (in phase 1) modules, it has now (Analytics
in phase 2) become relatively hard.

After all, there is no single desirable output anymore: the desired output
(association rules) depends on the desired time range. It is clear though
that the association rule mining itself is still very fast. However, given an

167

Episodes log file of e.g. 50,000 lines, it is clearly far less efficient to mine these
for association rules using FP-Stream, even if only due to the fact that many
FPGrowth instances need to be created (one for every batch that corresponds
to a 15-minute window).

The consequence is that there is a negligible performance difference between
different sizes of batches. In the test data set that I’m using, there typically
are only between 100 and 300 Episodes log lines for each 15-minute window,
resulting in about 1,000 to 3,000 transactions. Let us assume the average is
1,500 transactions. The difference in processing time for 1,500 transactions
versus, say, 12,000 (the 8-fold!) transactions is not so large: less than a sec-
ond for 1,500 transactions and still less than a second for 12,000 transactions
(see section 10.3.6: FPGrowth can handle over 16,500 transactions per sec-
ond).
Due to the overhead incurred by having FP-Stream deciding for each individ-
ual frequent itemset whether mining should be continued or not, this number
will be lower in practice, but the point is nevertheless clear.

Debug Mode Versus Release Mode

It’s worth mentioning that in this test case of 50,000 lines (which covers X
days, from A to B), the processing takes 6 to 7 minutes in debug mode, but
only 2 minutes in release mode. Clearly, release mode is far more efficient!

Memory Consumption

While performing the calculations for a ±50,000 lines long Episodes log file,
memory consumption reaches an all-time high of ±46 MB, but upon com-
pletion it drops to ±28 MB, which corresponds to the memory consumed by
QBrowsCap’s and QGeoIP’s in-memory caches, the Qt libraries, plus some
data cached by the Analytics module, plus the PatternTree.
When you compare this to the memory consumption of EpisodesParser and
Analytics at the end of phase 1, it is clear that the memory consumption by
the PatternTree is very small (a few megabytes); and that there are likely
no memory leaks whatsoever.39

39Running the application through valgrind also reveals no memory leaks.

168

Figure 25: All data is analyzed.

10.5 UI

The UI was built with 3 purposes in mind:

• make the application built for this thesis (as discussed in the preceding
sections) actually usable

• make the association rules that are found easy to interpret and analyze
(i.e. sorting, filtering and comparing association rules)

• provide status and performance indicators (to allow the user to monitor
the algorithm, but also to show off the performance)

The UI serves a purely functional and demonstrational purpose, and is not
particularly user friendly nor usable (no usability tests have been conducted).
A blissful UI was not the purpose of this master thesis, and hence this rough
UI is sufficient.

169

Figure 26: Sorted causes by amount of slow page loads (descendingly), si-
multaneously filtering by both episode and a substring of a circumstance.

Figure 27: The filtering provides auto completion support for all items en-
countered so far in the data stream’s concept hierarchy.

170

Figure 28: It is also possible to compare the causes of two different time
ranges (note that the filter is still active).

171

10.6 Conclusion

10.6.1 Unit Tests

For each major piece of functionality, there are unit tests that ensured I
either did not encounter any bugs after finishing some piece of functionality,
i.e. I could simply rely on what I had written without any worries — it
just worked. However, I am not perfect, so the coverage of a few of my unit
tests turned out to be insufficient. Overall, the writing of unit tests helped
significantly. It allowed me to completely forget the details of some of the
things I developed along the way, thus allowing me to focus on the problem
at hand.

For EpisodesParser, I could assume that the QBrowsCap and QGeoIP li-
braries I wrote just worked (which they did).
I then wrote unit tests for EpisodesParser itself, allowing me to focus on
Analytics (again, I never had to look back at EpisodesParser to track
down bugs).
While I worked on phase 1 of the Analytics module, I added tests for the
FPTree class, then for the FPGrowth class and finally for the RuleMiner class.
As you can see, it really did allow me to build the basic building blocks that
I needed to be able to go forward and then forget about its internals.
Similarly, for phase 2 of the Analytics module, I wrote unit tests for the
TiltedTimeWindow class, then for PatternTree and finally for FPStream.

10.6.2 Applicability

An obvious question is: for sites up to which scale can this application be
used to analyze the data? Based on the following assumptions:

• linear scalability of the application (which is not unreasonable given
the fact that it strongly compresses the data that needs to be stored in
the FP-Tree and Pattern Tree data structures)

• a computer with similar computational power (far more powerful com-
puters are already available, my computer is a 2.5 year old high-end
notebook, so this is a weakening this assumption by using a more pow-
erful computer will certainly prove the conclusion below true)

• a performance of only 1,200 instead of 1,500 Episodes log lines per
second can be achieved (remember that each Episodes log line equates

172

to a single web site page view), due to the overhead incurred by FP-
Stream

• an average of 10 episodes per tracked page (in my example, the average
is 11)

Then it is possible to analyze a live site’s data stream of Episodes log data at
up to 1,200 page views per second, which is sufficient for websites with more
than 100 million page views per day (or 3 billion page views per month).
Hence, it is sufficient for more than 99% of all websites.

The largest sites in the world could in theory also use my application, but
they would probably want to collect data for e.g. only each in every ten page
views. Clearly, this also applies to the case with 100 million page views per
day: to get meaningful results, it is not necessary to perform measurements
for every visitor when the web site’s traffic is sufficiently large.

10.6.3 Overall

Although the unit tests allowed me to progress better than expected, I still
did encounter plenty of obstacles, as is illustrated by the various “Obstacles”
subsections in the preceding sections (see 10.2.4, 10.3.4 and 10.4.4). This also
explains why I was unable to implement the whole range of potentially useful
WPO analytics algorithms. Admittedly, that range was probably overly
ambitious.

Since the results are very satisfying (especially given the preceding section
that discusses applicability), I think it’s fair to conclude that overall, the
implementation is very satisfactory!

10.6.4 Vision

Now that an application has been built (and is free for everybody to use
— see section 7) that is capable of automatically pinpointing causes of slow
page loads, the next step is getting in as many hands as possible.

The most effective way to ensure this happens, is by providing a web service
capable of storing Episodes log files.
Instructions should be provided on how to integrate Episodes (or a similar
library) with any given web site. Then, Episodes should be configured to
send the log data to this web service.
Finally, the application that was built for this master thesis could be used

173

to perform the analysis over the Episodes log files stored in the web service,
to then show the found causes to the user.

174

11 WPO Gaining Attention

It is interesting to see how WPO has gained attention over the course of this
master thesis (started in December 2009, ended in June 2011). While it was
still a relatively unknown term at the start of my master thesis, it is well on
its way to become one of the next buzzwords in June 2011.

For example, almost a year ago, at the end of June in 2010, Microsoft an-
nounced they were the first to support the Web Timing spec [19] (now re-
named to “Navigation Timing”) in their then upcoming Internet Explorer 9
release. This has pushed Google Chrome and Mozilla Firefox to also imple-
ment this specification.
This is great news, because this will allow Episodes [5] to work in a much
more accurate manner for the most important episodes, which implies that
the application written for this master thesis can perform a more accurate
analysis as well.

New Relic is a company that provides real-time performance monitoring of
websites and web applications. Their services are used by tens of thousands
of large websites. On May 17, 2011, they announced their new Real User
Monitoring (RUM) functionality [92].
However, their offering cannot match what my master thesis is capable of:
they only show pretty charts indicating total page load time, as well as a
map indicating each country’s average page load time and a chart indicating
average page load time per browser. They’re not yet able to automatically
deduce in which exact circumstances page loads (or just some episodes) are
slow!

Finally, Google is also driving the adoption of ’WPO’ as a buzzword: on
May 4, 2011, they announced [93] a new “Site Speed Analytics Report” for
their free Google Analytics product (which — ironically —was the goal I
outlined more than one and a half year ago: “to build something like Google
Analytics, but for web performance instead of just page loads”, see section
1).
Unfortunately, they’re doing it in a quite incorrect and even biased man-
ner: they’re not doing it for all visitors, or not even for a randomly chosen
subset of them, but for those who use the Google Toolbar, Google Chrome
or browsers that support the Web Timing (Navigation Timing) spec. That
means Internet Explorer 6, 7 and 8 are excluded from measurements, as well
as many modern browsers such as Safari 5, Firefox 3, 4 and 5, and virtually
all mobile browsers.

One thing should be clear though: WPO has become big business!

175

12 Glossary

binarization similar to discretization, but instead of transforming into cat-
egorical attributes, transformations into one or more binary attributes
are made
— based on [25], pages 57—63

browser A web browser is an application that runs on end user computers
to view web sites (which live on the World Wide Web). Examples are
Firefox, Internet Explorer, Safari and Opera.

categorical attributes also known as qualitative attributes; attributes with-
out numeric properties: they should be treated like symbols ; subclasses
of this type of attribute are nominal and ordinal attributes
— based on [25], pages 25—27

CDN A content delivery network (CDN) is a collection of web servers dis-
tributed across multiple locations to deliver content more efficiently to
users. The server selected for delivering content to a specific user is
typically based on a measure of network proximity.

component A component of a web page, this can be a CSS style sheet, a
JavaScript file, an image, a font, a movie file, et cetera. Synonyms:
resource, web resource.

DBMS a computer program that aids in controlling the creation, usage and
maintenance of a database

discretization some kinds of processing data require categorical attributes;
if these need to be applied on a continuous attribute, this continuous
attribute may need to be transformed into a categorical attribute: this
is called discretization. Additionally, if the resulting categorical at-
tribute has a large number of values (categories), it may be useful to
reduce the number of categories by combining some of them.
This is necessary for e.g. histograms.
— based on [25], pages 57—63

episode An episode in the page loading sequence.

Episodes The Episodes framework [5] (note the capital ’e’).

page loading performance The time it takes to load a web page and all
its components.

177

page rendering performance The time the server needs to render a web
page.

PoP A Point of Presence is an access point to the internet where multiple
Internet Service Providers connect with each other.

quantitative attributes also known as numeric attributes; attributes that
can be represented as numbers and have most of the properties of num-
bers; either integer-valued or continuous; subclasses of this type of at-
tribute are interval and ratio attributes
— based on [25], pages 25—27

RDBMS a relational DBMS that is based on the relational model, as in-
troduced by Codd. Examples are MySQL, PostgreSQL, SQL Server,
Oracle . . .

web page An (X)HTML document that potentially references components.

178

References

[1] Improving Drupal’s page loading performance, Wim Leers,
Universiteit Hasselt, 2009, http://wimleers.com/blog/

finished-my-bachelor-degree

[2] Drupal, http://drupal.org/

[3] File Conveyor, http://fileconveyor.org/

[4] High Performance Web Sites, Steve Souders, 2007, O’Reilly, http://

stevesouders.com/hpws/

[5] Episodes: a Framework for Measuring Web Page Load Times, Steve
Souders, July 2008, http://stevesouders.com/episodes/paper.php

[6] Episodes: a shared approach for timing web pages, Steve Souders, 2008,
http://stevesouders.com/docs/episodes-tae-20080930.ppt

[7] Gomez, http://www.gomez.com/

[8] Keynote, http://www.keynote.com/

[9] WebMetrics, http://www.webmetrics.com/

[10] Pingdom, http://pingdom.com/

[11] Episodes module for Drupal, http://drupal.org/project/episodes

[12] Deep Tracing of Internet Explorer, John Resig,
Mozilla, November 17, 2009, http://ejohn.org/blog/

deep-tracing-of-internet-explorer/

[13] An Update for Google Chrome’s Developer Tools, Pavel Feldman,
Google, November 30, 2009, http://code.google.com/events/io/

2009/sessions/MeasureMillisecondsPerformanceTipsWebToolkit.

html

[14] Yahoo! YSlow, http://developer.yahoo.com/yslow/

[15] Google Page Speed, http://code.google.com/speed/page-speed/

[16] A 2x Faster Web, The Chromium Blog, Mike Belshe, November 11,
2009, http://blog.chromium.org/2009/11/2x-faster-web.html

179

http://wimleers.com/blog/finished-my-bachelor-degree
http://wimleers.com/blog/finished-my-bachelor-degree
http://drupal.org/
http://fileconveyor.org/
http://stevesouders.com/hpws/
http://stevesouders.com/hpws/
http://stevesouders.com/episodes/paper.php
http://stevesouders.com/docs/episodes-tae-20080930.ppt
http://www.gomez.com/
http://www.keynote.com/
http://www.webmetrics.com/
http://pingdom.com/
http://drupal.org/project/episodes
http://ejohn.org/blog/deep-tracing-of-internet-explorer/
http://ejohn.org/blog/deep-tracing-of-internet-explorer/
http://code.google.com/events/io/2009/sessions/MeasureMillisecondsPerformanceTipsWebToolkit.html
http://code.google.com/events/io/2009/sessions/MeasureMillisecondsPerformanceTipsWebToolkit.html
http://code.google.com/events/io/2009/sessions/MeasureMillisecondsPerformanceTipsWebToolkit.html
http://developer.yahoo.com/yslow/
http://code.google.com/speed/page-speed/
http://blog.chromium.org/2009/11/2x-faster-web.html

[17] Making browsers faster: Resource Packages, Alexander Limi, November
17, 2009, http://limi.net/articles/resource-packages/

[18] Fewer requests through resource packages, Steve Souders, Novem-
ber 18, 2009, http://www.stevesouders.com/blog/2009/11/18/

fewer-requests-through-resource-packages/

[19] Web Timing (Working Draft), Zhiheng Wang, Google Inc., September
26, 2009, http://dev.w3.org/2006/webapi/WebTiming/

[20] Google: Page Speed May Become a Ranking Fac-
tor in 2010, WebProNews, November 19, 2009,
http://www.webpronews.com/topnews/2009/11/13/

google-page-speed-may-be-a-ranking-factor-in-2010

[21] Using site speed in web search ranking, Google Webmaster Central
Blog, April 9, 2010, http://googlewebmastercentral.blogspot.com/
2010/04/using-site-speed-in-web-search-ranking.html

[22] How fast is your site?, Webmaster Central Blog, Sreeram Ramachandra
& Arvind Jain, December 2, 2009, http://googlewebmastercentral.
blogspot.com/2009/12/how-fast-is-your-site.html

[23] Google Analytics, http://google.com/analytics

[24] Google AppEngine, http://code.google.com/appengine

[25] Introduction to Data Mining, Pang-Ning Tan; Michael Steinbach; Vipin
Kumar, Pearson-Addison Wesley, 2006

[26] UCI Machine Learning Repository, R.A. Fisher, 1936, http://archive.
ics.uci.edu/ml/datasets/Iris

[27] Web Data Mining, Bing Liu, 2008

[28] Web Mining Course, Gregory Piatetsky-Shapiro, KDnuggets, 2006,
http://www.kdnuggets.com/web_mining_course/

[29] Log Files—Apache HTTP Server, http://httpd.apache.org/docs/1.
3/logs.html

[30] Computer Networking: A Top-Down Approach (4th Edition), James F.
Kurose; Keith W. Ross, Addison Wesley, 2007

[31] Classless Inter-Domain Routing, http://en.wikipedia.org/wiki/

Classless_Inter-Domain_Routing

180

http://limi.net/articles/resource-packages/
http://www.stevesouders.com/blog/2009/11/18/fewer-requests-through-resource-packages/
http://www.stevesouders.com/blog/2009/11/18/fewer-requests-through-resource-packages/
http://dev.w3.org/2006/webapi/WebTiming/
http://www.webpronews.com/topnews/2009/11/13/google-page-speed-may-be-a-ranking-factor-in-2010
http://www.webpronews.com/topnews/2009/11/13/google-page-speed-may-be-a-ranking-factor-in-2010
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2009/12/how-fast-is-your-site.html
http://googlewebmastercentral.blogspot.com/2009/12/how-fast-is-your-site.html
http://google.com/analytics
http://code.google.com/appengine
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://www.kdnuggets.com/web_mining_course/
http://httpd.apache.org/docs/1.3/logs.html
http://httpd.apache.org/docs/1.3/logs.html
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

[32] Mining association rules between sets of items in large databases, R.
Agrawal; T. Imielinski; A. N. Swami, Proc. ACM SIGMOD, pages
207–216, 1993

[33] Mining quantitative association rules in large relational tables, R.
Srikant; R. Agrawal, Proc. ACM SIGMOD, 1996

[34] Mining Generalized Association Rules, Ramakrishnan Srikant; Rakesh
Agrawal, Proceedings of the 21th International Conference on Very
Large Data Bases, p.407-419, September 11-15, 1995

[35] Mining Rank-Correlated Sets of Numerical Attributes, Toon Calders
(University of Antwerp); Bart Goethals (Szczecin University of Tech-
nology), Proc. KDD’06

[36] Rank Correlation Methods, M. Kendall, Oxford University Press, 1990

[37] Measures of Association, A.M. Liebetrau, volume 32 of Quantitative
Applications in the Social Sciences, Sage Publications, 1983

[38] The art and craft of postload preloads, Stoyan
Stefanov, August 2009, http://www.phpied.com/

the-art-and-craft-of-postload-preloads/

[39] Preload CSS/JavaScript without execution, Stoyan
Stefanov, April 2010, http://www.phpied.com/

preload-cssjavascript-without-execution/

[40] Same Origin Policy, W3C, http://www.w3.org/Security/wiki/Same_
Origin_Policy

[41] Data Mining: Concepts and Techniques, Jiawei Han; Micheline Kamber,
Morgan Kaufmann, 2006

[42] Approximate Query Processing Using Wavelets, K. Chakrabarti; M.
Garofalakis; R. Rastogi; K. Shim, Proceedings of the International Con-
ference on Very Large Databases, 2000

[43] The space complexity of approximating the frequency moments, N. Alon;
Y. Matias; M. Szegedy, Proceedings of the Twenty-Eighth Annual ACM
Symposium on theory of Computing, 1996

[44] Optimal approximations of the frequency moments of data streams, P.
Indyk; D. Woodruff, Proceedings of the thirty-seventh annual ACM sym-
posium on Theory of computing, 2005

181

http://www.phpied.com/the-art-and-craft-of-postload-preloads/
http://www.phpied.com/the-art-and-craft-of-postload-preloads/
http://www.phpied.com/preload-cssjavascript-without-execution/
http://www.phpied.com/preload-cssjavascript-without-execution/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy

[45] Simpler algorithm for estimating frequency moments of data streams, L.
Bhuvanagiri, S. Ganguly; D. Kesh; C. Saha, Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, 2006

[46] Models and issues in data stream systems, B. Babcock; S. Babu; M.
Datar; R. Motwani; J. Widom, Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, 2002

[47] Tracking join and self-join sizes in limited storage, N. Alon, P. Gibbons;
Y. Matias; M. Szegedy, Proc. of the 1999 ACM Symp. on Principles of
Database Systems, pages 10–20, 1999.

[48] The space complexity of approximating the frequency moments, N. Alon;
Y. Matias; M. Szegedy, Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, 1996

[49] New Sampling-Based Summary Statistics for Improving Approximate
Query Answers, P. B. Gibbons; Y. Matias, SIGMOD RECORD, 1998,
VOL 27; NUMBER 2, pages 331-342, 1998

[50] Synopsis data structures for massive data sets, P. B. Gibbons; Y. Ma-
tias, Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms table of contents, 1999

[51] Run-Length Encoding, http://en.wikipedia.org/wiki/

Run-length_encoding

[52] An Improved Data Stream Summary: The Count-Min Sketch and Its
Applications, G. Cormode; S. Muthukrishnan, LECTURE NOTES IN
COMPUTER SCIENCE 2004, issue 2976, pages 29-38, 2004

[53] Approximate frequency counts over data streams, G. S. Manku; R. Mot-
wani, Proceedings of the 28th international conference on Very Large
Data Bases, 2002

[54] Random sampling with a reservoir, J. S. Vitter, ACM Transactions on
Mathematical Software (TOMS), 1985

[55] Finding Frequent Items in Data Streams, M. Charikar; K. Chen; M.
Farach-Colton, LECTURE NOTES IN COMPUTER SCIENCE, 2002,
ISSU 2380, pages 693-703, 2002

182

http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding

[56] Probabilistic Lossy Counting: An efficient algorithm for finding heavy
hitters, X. Dimitropoulos; P. Hurley; A. Kind, ACM SIGCOMM COM-
PUTER COMMUNICATION REVIEW 2008, VOL 38; NUMB 1, pages
5-16, 2008

[57] A proof for the queueing formula: l = λw, J. D. C. Little, Operations
Research, 9(3):383–387, 1961

[58] Mining Frequent Patterns in Data Streams at Multiple Time Granular-
ities, C. Giannella; J. Han; J. Pei; X. Yan; P. S. Yu, Next generation
data mining, 2003

[59] A simple algorithm for finding frequent elements in streams and bags, R.
M. Karp; S. Shenker; C. H. Papadimitriou, ACM TRANSACTIONS ON
DATABASE SYSTEMS, 2003, VOL 28; PART 1, pages 51-55, 2003

[60] Fast algorithms for mining association rules, R. Agrawal; R. Srikant,
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1994

[61] Mining Frequent Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach, J. Han; J. Pei; Y. Yin; R. Mao, DATA MINING
AND KNOWLEDGE DISCOVERY, 2004, VOL 8; NUMBER 1, pages
53-87, 2000

[62] Anomaly Detection: A Survey, V. Chandola; A. Banerjee; V. Kumar,
ACM Computing Surveys (CSUR) Volume 41, Issue 3, 2009

[63] Learning to Predict Rare Events in Event Sequences, G. M. Weiss; H.
Hirsh, Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining, 1998

[64] Predicting Rare Events In Temporal Domains, R. Vilalta; S. Ma, Pro-
ceedings of the 2002 IEEE International Conference on Data Mining,
2002

[65] Data Cube: A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals, Jim Gray (Microsoft); Adam Bosworth (Mi-
crosoft); Andrew Layman (Microsoft); Hamid Pirahesh (IBM), 1996

[66] ISO/IEC 9075-1:2008, 2009, http://www.iso.org/iso/iso_

catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45498

[67] GROUP BY Modifiers, MySQL 5.0 Reference Manual, http://dev.

mysql.com/doc/refman/5.0/en/group-by-modifiers.html

183

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45498
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45498
http://dev.mysql.com/doc/refman/5.0/en/group-by-modifiers.html
http://dev.mysql.com/doc/refman/5.0/en/group-by-modifiers.html

[68] Cubing Algorithms, Storage Estimation, and Storage and Processing
Alternatives for OLAP, Prasad M. Deshpande; Jeffrey F. Naughton;
Karthikeyan Ramasamy; Amit Shukla; Kristin Tufte; Yihong Zhao, Uni-
versity of Wisconsin-Madison, Bulletin of the Technical Committee on
Data Engineering Vol. 20 No. 1, 1997

[69] An Introduction to Probability Theory and Its Applications, W. Feller,
1957

[70] Probabilistic Counting Algorithms for Database Applications, P. Flajolet;
G.N. Martin, Journal of Computer and System Sciences, Journal of
Computer and System Sciences 31(2): 182-209, 1985.

[71] Data Cubes in Dynamic Environments, Steven P. Geffner; Mirek Riede-
wald; Divyakant Agrawal; Amr El Abbadi, University of California, Bul-
letin of the Technical Committee on Data Engineering Vol. 22 No. 4,
1999

[72] Range Queries in OLAP Data Cubes, C. Ho; R. Agrawal; N. Megiddo;
R. Srikant, Proc. ACMSIGMOD, 1997

[73] The dynamic data cube, S. Geffner; D. Agrawal; A. El Abbadi, Proc.
EDBT, 2000

[74] Stream Cube: An Architecture for Multi-Dimensional Analysis of Data
Streams, J. Han; Y. Chen; G. Dong; J. Pei; B. W. Wah; J. Wang; Y. D.
Cai, Distributed and Parallel Databases Vol. 18 p. 173—197, 2005

[75] Efficient computation of iceberg cubes with complex measures, J. Han; J.
Pei; G. Dong; K. Wang, Proc. SIGMOD, 2001, pp. 1–12

[76] QCachingLocale: speeding up QSystemLocale::query() calls,
Wim Leers, November 2010, http://wimleers.com/blog/

qcachinglocale-speeding-up-qsystemlocalequery-calls

[77] QTBUG-17271: QSystemLocale::query() performance issues on OS X
(±100 times slower than on Windows), Wim Leers, Qt bug tracker,
http://bugreports.qt.nokia.com/browse/QTBUG-17271

[78] QCachingLocale project, Wim Leers, https://github.com/wimleers/
QCachingLocale

[79] BrowsCap: Browser Capabilities Project, Gary Keith, http://

browsers.garykeith.com

184

http://wimleers.com/blog/qcachinglocale-speeding-up-qsystemlocalequery-calls
http://wimleers.com/blog/qcachinglocale-speeding-up-qsystemlocalequery-calls
http://bugreports.qt.nokia.com/browse/QTBUG-17271
https://github.com/wimleers/QCachingLocale
https://github.com/wimleers/QCachingLocale
http://browsers.garykeith.com
http://browsers.garykeith.com

[80] QBrowsCap project, Wim Leers, https://github.com/wimleers/

QBrowsCap

[81] QBrowsCap & QGeoIP: detecting browsers and locations,
Wim Leers, March 2011, http://wimleers.com/blog/

qbrowscap-qgeoip-detecting-browsers-and-locations#

conclusion

[82] Globbing, Wikipedia, http://en.wikipedia.org/wiki/Glob_

(programming)

[83] MaxMind, http://www.maxmind.com/

[84] GeoIP C API, MaxMind, http://www.maxmind.com/

[85] QGeoIP project, Wim Leers, https://github.com/wimleers/QGeoIP

[86] Trie data structure, Wikipedia, http://en.wikipedia.org/wiki/Trie

[87] A Space Optimization for FP-Growth, E. Özkural and C. Aykanat, De-
partment of Computer Engineering, Bilkent University 06800 Ankara

[88] FP-Bonsai: the Art of Growing and Pruning Small FP-Trees, F. Bonchi
and B. Goethals

[89] Constrained Frequent Pattern Mining: A Pattern-Growth View, J. Pei
and J. Han

[90] Interactive Constrained Association Rule Mining, B. Goethals and J.
Van den Bussche

[91] Efficient Mining of Constrained Frequent Patterns from Streams, C. K.
Leung and Q. I. Khan, Proc. IDEAS’06

[92] How we provide real user monitoring: A quick technical review,
New Relic, May 17, 2011, http://blog.newrelic.com/2011/05/17/

how-rum-works/

[93] Measure Page Load Time with Site Speed Analytics Report, Google
Analytics, May 4, 2011, http://analytics.blogspot.com/2011/05/

measure-page-load-time-with-site-speed.html

185

https://github.com/wimleers/QBrowsCap
https://github.com/wimleers/QBrowsCap
http://wimleers.com/blog/qbrowscap-qgeoip-detecting-browsers-and-locations#conclusion
http://wimleers.com/blog/qbrowscap-qgeoip-detecting-browsers-and-locations#conclusion
http://wimleers.com/blog/qbrowscap-qgeoip-detecting-browsers-and-locations#conclusion
http://en.wikipedia.org/wiki/Glob_(programming)
http://en.wikipedia.org/wiki/Glob_(programming)
http://www.maxmind.com/
http://www.maxmind.com/
https://github.com/wimleers/QGeoIP
http://en.wikipedia.org/wiki/Trie
http://blog.newrelic.com/2011/05/17/how-rum-works/
http://blog.newrelic.com/2011/05/17/how-rum-works/
http://analytics.blogspot.com/2011/05/measure-page-load-time-with-site-speed.html
http://analytics.blogspot.com/2011/05/measure-page-load-time-with-site-speed.html

	Introduction
	Continuous Profiling
	Context
	Conclusion

	I Literature Study
	Justification of Literature Study Subjects
	Detecting Web Performance Issues
	Efficient & Accurate Numerical Data Mining
	A Goal-Optimized Form of Categorical Data Mining

	Detecting Advanced Web Performance Issues
	Preloading of Components Based on Typical Navigation Paths

	Data Stream Mining
	Methodologies for Stream Data Processing
	Random Sampling
	Sliding Windows
	Histograms
	Multiresolution Methods
	Sketches
	Randomized Algorithms

	Frequent Item Mining
	Window Models
	Algorithm Classification
	Basic Sampling
	Concise Sampling
	Counting Sampling
	Sticky Sampling
	Lossy Counting
	Count Sketch
	Probabilistic Lossy Counting

	Frequent Pattern (Itemset) Mining
	Lossy Counting for Frequent Itemsets
	FP-Stream

	Anomaly Detection
	What are Anomalies?
	Challenges
	Types of Anomalies
	Point Anomalies
	Contextual Anomalies
	Collective Anomalies

	Anomaly Detection Modes
	Anomaly Detection Output
	Contextual Anomaly In Detail
	Contextual Anomaly Algorithms
	Vilalta/Ma
	Timeweaver

	OLAP: Data Cube
	Multidimensional Data Representation
	Fact Table
	Multidimensional Array

	Slicing and Dicing
	Data Cube
	Definition

	Generalized constructs
	Histogram
	Cross tabulation
	Roll-up
	Drill-down
	Generalization explained

	The Data Cube Operator
	Elaborate data cube example
	Performance
	Efficient Cubing
	Precomputing for Speed: Storage Explosion
	The Impact of the Data Structure
	Conclusion

	Performance for range-sum queries and updates
	Prefix Sum
	Relative Prefix Sum
	The Dynamic Data Cube

	Stream Cube: Data Cube for Data Streams
	Design Requirements
	Architecture
	Performance
	FP-Stream + Stream Cube

	Conclusion

	II Implementation
	Overview of work performed
	The Process
	Episodes Log Mining
	Introduction
	Web Usage Mining
	Web Usage Mining Versus Episodes Log Mining
	The Mining Process

	The Attributes
	All Fields Explained
	Preprocessing Fields into Numerical and (Hierarchical) Categorical Attributes
	Mining with Concept Hierarchies

	Implementation
	General
	EpisodesParser
	Information Representation
	Program Flow
	Notes Regarding the Conversion to Transactions
	Obstacles
	End Result
	Performance

	Analytics — Phase 1
	Information Representation
	Program Flow
	Optimizations
	Obstacles
	End Result
	Performance

	Analytics — Phase 2
	Information Representation
	Program Flow
	Optimizations
	Obstacles
	End Result
	Performance

	UI
	Conclusion
	Unit Tests
	Applicability
	Overall
	Vision

	WPO Gaining Attention
	Glossary

