
Improving Drupal’s page loading performance

Wim Leers

Thesis proposed to achieve the degree of bachelor
in computer science/ICT/knowledge technology

Promotor : Prof. dr. Wim Lamotte
Co-promotor : dr. Peter Quax

Mentors: Stijn Agten & Maarten Wijnants

Hasselt University
Academic year 2008-2009

Abstract

This bachelor thesis is about improving Drupal’s page loading performance
through integrating Drupal with a CDN. Page loading performance is about
reducing the time it takes to load a web page. Because reducing that time
also reduces the time required to access information, increases the number of
satisfied visitors, and if the web site is commercial, it increases revenue.

Before you can prove that improvements are made, you need a tool to measure
that. So first, a comparison is made of available page loading performance
profiling tools (and related tools). Episodes is chosen because it is the only
tool that measures the real-world page loading performance. This requires tight
integration with Drupal though, so a module was written to integrate Episodes
with Drupal. A companion module to visualize the collected measurements
through basic charts was also written.

Next, a daemon was written to synchronize files to a CDN (actually, any kind
of file server). It was attempted to make the configuration as self-explanatory
as possible. The daemon is capable of processing the file before it is synced,
for example to optimize images or compress CSS and JavaScript files. A vari-
ety of transporters (for different protocols) is available to transport the file to
file servers. According to the configuration file, files are detected through the
operating system’s file system monitor and then processed and transported to
their destination servers. The resulting URLs at which the files are available
are stored in a database.

Then, a Drupal module was written that makes it easy to integrate Drupal with
a CDN (both with and without the daemon). A patch for Drupal core had to
be written to make it possible to alter the URLs to static files (CSS, JavaScript,
images, and so on). To make this functionality part of the next version of Drupal
core, a patch for that version was also submitted.

Finally, a test case was built. A high-traffic web site with a geographically
dispersed audience was migrated to Drupal and the Episodes integration was
enabled. The first period, no CDN integration was enabled. Then the daemon
was installed and CDN integration was enabled. Files were being synced to
a static file server in Belgium and a North-American CDN, and visitors were
assigned to either one, based on their geographical location. This second pe-
riod, with CDN integration enabled, was also measured using Episodes and
conclusions were drawn from this.

i

Preface

When I wrote a custom proposal for a bachelor thesis, it was quickly approved
by my promotor, Prof. dr.Wim Lamotte. I would like to thank him for making
this bachelor thesis possible. He also approved of writing this thesis in the open,
to get feedback from the community and to release all my work under the GPL,
which will hopefully ensure it will be used. I have worked to the best of my
abilities to try to ensure that my work can be used in real world applications.

During the creation of this bachelor thesis, I have often received very useful
feedback from my mentors, Maarten Wijnants and Stijn Agten. My sincere
thanks go to them. I would also like to thank dr. Peter Quax, co-promotor of
this bachelor thesis.

I would also like to thank Rambla and SimpleCDN for providing free CDN
accounts for testing and SlideME for providing feedback on my work.

Finally, I would like to thank my parents and my brother, whose support has
been invaluable.

ii

Dutch summary/Nederlandstalige samenvatting

Het doel van deze bachelorproef is het verbeteren van de “page loading perfor-
mance” van Drupal.

Drupal is een systeem om websites mee te bouwen en is bedoeld voor zowel ont-
wikkelaars als eindgebruikers: het voorziet zowel uitgebreide API’s als een rijk
ecosysteem aan kant-en-klare modules, die kunnen gedownload en gëınstalleerd
worden in minder dan een minuut. Het is geschreven in PHP, omdat die taal op
de meeste servers beschikbaar is en één van de doelstellingen van Drupal is om
op zoveel mogelijk servers te werken. Zo is het aantal potentiële gebruikers het
grootst, want het maakt het gebruik van Drupal goedkoper. Drupal is er ook
op gericht om zoveel mogelijk te innoveren en om de laatste trends te volgen —
of er op vooruit te lopen. Het is een volwassen open source software project dat
wordt gebruikt door vele bekende instanties, waaronder de Belgische overheid,
Disney, de NASA, Harvard university en de Verenigde Naties.
Honderdduizenden websites gebruiken Drupal. Het verbeteren van de page loa-
ding performance van Drupal kan dus een effect hebben op een groot aantal
websites. Een van de meest effectieve methodes om de page loading perfor-
mance te verbeteren, is het gebruik van een CDN.

Een CDN is een verzameling van webservers die verspreid staan over meerdere
locaties om gegevens efficiënter af te leveren bij gebruikers. De server die geselec-
teerd wordt om gegevens aan een specifieke gebruiker te leveren wordt meestal
gedaan op basis van de afstand in het netwerk, waarbij dichterbij beter is.
Er zijn twee soorten CDN wat betreft het plaatsen van bestanden op de CDN:
push en pull. Pull vereist vrijwel geen werk: URLs moeten aangepast worden,
waarbij de domeinnaam van de CDN geplaatst wordt waar voorheen de do-
meinnaam van de website stond. De CDN downloadt dan vanzelf de bestanden
die het moet verzenden aan de gebruiker van de server van de website. Dit
wordt de Origin Pull techniek genoemd. Anderzijds zijn er ook CDNs die een
push-mechanisme ondersteunen, waarbij door middel van bijvoorbeeld FTP de
bestanden op de CDN kunnen geplaatst worden. De CDN downloadt dus niet
vanzelf de bestanden, die moeten er door de eigenaar van de website op ge-
plaatst worden.
Mijn doelstelling was om drie soorten CDN’s te ondersteunen:

1. iedere CDN die Origin Pull ondersteunt

2. iedere CDN die FTP ondersteunt

3. Amazon S3/CloudFront, dit is een specifieke CDN met een eigen protocol.
Omdat deze zo populair is, heb ik er voor gekozen om deze ook expliciet
te ondersteunen.

Dit lijken de de drie meest gebruikte soorten CDN’s te zijn.

Page loading performance gaat over het minimaliseren van de tijd die nodig is
om een webpagina in te laden. Want snellere websites betekent tevredenere be-
zoekers die vaker terugkomen en, indien je website commercieel is, meer omzet.

iii

Zo wezen bijvoorbeeld tests van Google uit dat een halve seconde extra tijd om
zoekresultaten te laden, een vermindering van twintig procent van het aantal
zoekacties met zich meebracht. Amazon merkte dat iedere honderd milliseconde
aan extra tijd om een webpagina in te laden in een daling van één procent van
het aantal verkopen resulteerde. Als je dan nog weet dat het helemaal niet uit-
zonderlijk is om laadtijden van vijf seconden en meer te hebben, wordt al snel
duidelijk dat de impact groot kan zijn.

Om te garanderen dat mijn pogingen om de page loading performance van
Drupal te verbeteren, was het echter noodzakelijk om de resultaten te kunnen
meten. Na het analyseren van een brede waaier aan page loading performance
profiling tools (en gerelateerde tools), werd het al snel duidelijk dat Episodes (dit
was slechts een prototype, geschreven door Steve Souders — dit is de persoon
die het fenomeen page loading performance en het nut van het optimaliseren
ervan, bekend heeft gemaakt) was de beste kandidaat: het is de enige tool die de
mogelijkheid heeft om de wérkelijke page loading performance te meten, omdat
het metingen doet in de browser van iedere bezoeker van de website, bij iedere
paginaweergave. De gemeten episodes worden door middel van een GET request
en een uitgebreide query string naar een Apache server gelogd naar een Apache
log. Deze tool heeft bovendien ook het potentieel om dé standaard te worden in
de loop van de komende jaren. Het is zelfs niet ondenkbaar dat het ingebouwd
zal worden in toekomstige browsers.
Om het te gebruiken in mijn bachelorproef, heb ik de code opgekuist en het
klaar gemaakt (of tenminste bruikbaar) voor gebruik op een Drupal website,
via een nieuwe Drupal module: de Episodes module. Deze integratie gebeurt
op zo’n manier dat alle “Drupal behaviors” (dit zijn alle JavaScript “behaviors”
(gedragingen) die gedefinieerd worden door middel van een vastgelegde Drupal
JavaScript API) automatisch worden gemeten. Alles dat de eigenaar van de
website moet doen, is enkele veranderingen in zijn Drupal “theme” (letterlijk:
thema, het design van de website dus) aan te brengen om er voor te zorgen dat
al dat wat kan gemeten worden, ook effectief gemeten wordt.
Deze module is klaar voor gebruik in productie.

Ik heb tevens een bijbehorende Episodes Server module gemaakt. Via deze mo-
dule is het mogelijk om de logs die verzameld zijn door middel van Episodes
te importeren en de metingen te visualiseren door middel van grafieken (ge-
genereerd aan de hand van Google Chart API). Dankzij deze grafieken kan je
de werkelijke page loading performance over een tijdspanne evalueren. Het is
zelfs mogelijk om de page loading performance van meerdere landen tegelijk te
vergelijken met de globale page loading performance. Het laat je ook toe om
te zien welke episodes momenteel het langst duren en dus het best geschikt zijn
voor optimalisatie.
Deze module is nog niet klaar voor gebruik in productie, maar het is een goede
basis om van te beginnen. De code die de logs in de database importeert, werkt
gegarandeerd dankzij unit tests.

Dan is er natuurlijk de daemon om bestanden te synchroniseren. Dit was het
belangrijkste deel van deze bachelorproef. Hoe raar het ook mag lijken, er lijkt
niets vergelijkbaar te bestaan, of tenminste niet publiekelijk beschikbaar (zelfs
geen commerciële programma’s). Als het zou bestaan, zou ik het zeker al ver-
nomen hebben van een van de tientallen mensen die op de hoogte zijn van het

iv

concept en doel van mijn bachelorproef.
Ik ben begonnen met het ontwerp van het configuratiebestand. De configuratie
van de daemon gebeurt door middel van een XML bestand dat is ontworpen om
gemakkelijk te zijn in gebruik, op voorwaarde dat je bekend bent met de termi-
nologie. Verscheidene mensen die zich thuis voelen in de terminologie werden
gevraagd om een voorbeeld configuratiebestand te bekijken en ze antwoordden
meteen dat het logisch in elkaar zat. Het is belangrijk dat dit gemakkelijk is,
want het is de interface naar de daemon toe.
De daemon werd gesplitst in grote componenten en ik ben begonnen met de
eenvoudigste, omdat ik dit zou schrijven in Python, een taal die ik nooit eerder
had gebruikt. Ik heb voor deze taal gekozen omdat volgens de geruchten het
je leven als programmeur een stuk makkelijker zou maken, deels dankzij de be-
schikbaarheid van modules voor vrijwel alles dat je je kan inbeelden. Gelukkig
bleek dat grotendeels waar te zijn, hoewel ik wel lange tijd gevreesd heb dat ik
alle code voor het transporteren van bestanden (transporters) zelf zou moeten
gaan schrijven. Dat zou een vrijwel onmogelijke opdracht geweest zijn, gegeven
de hoeveelheid tijd.
Dit is dan ook de reden waarom de daemon eigenlijk eenvoudigweg een verza-
meling Python modules is. Deze modules kunnen in eender welke applicatie
gebruikt worden, bijvoorbeeld de fsmonitory.py module — die bestandssys-
teem monitors op verschillende besturingssystemen abstraheert en zo een cross-
platform API creëert — kan makkelijk hergebruikt worden in andere applicaties.
Dus heb ik een relatief grote verzameling Python modules geschreven: config.py,
daemon thread runner.py, filter.py, fsmonitor.py (met een subclass voor
ieder ondersteund besturingssysteem), pathscanner.py, persistent list.py,
persistent queue,py, processor.py (met een verzameling subclasses, één
voor iedere processor) en transporter.py (met subclasses die zeer dunne wrap-
pers rond Django custom storage systems zijn). Telkens indien het haalbaar
was, heb ik unit tests geschreven. Maar omdat er in deze applicatie veel be-
stand I/O en netwerk I/O aan te pas komt, was dit vaak extreem complex om
te doen en dus overgeslagen, ook omdat de hoeveelheid beschikbare tijd be-
perkt was. Voor fsmonitor ondersteuning in Linux kon ik verder bouwen op de
pyinotify module en voor de transporters zag ik de mogelijkheid om Django’s
custom storage systems geheel te hergebruiken, waardoor ik zonder al te veel
moeite ondersteuning heb voor FTP, Amazon S3 en “Symlink or Copy” (een
speciaal custom storage system, om verwerkte bestanden ook te kunnen syn-
chroniseren met Origin Pull CDNs). Django is een framework om websites mee
te bouwen (in tegenstelling tot Drupal is het énkel geschikt voor developers) en
daarvan heb ik dus één API (en zijn dependencies) hergebruikt. Het gevolg is
dus dat veranderingen die gemaakt worden aan de transporters in de daemon,
weer kunnen worden teruggegeven en vice versa. Ik heb enkele bugfixes door-
gegeven die reeds goed bevonden zijn en nu dus deel uitmaken van die code.
Dit heeft een interessant neveneffect: arbitrator.py, de module die al deze op
zich zelf staande modules samenbindt tot één geheel (die dus arbitreert tussen
de verscheidene modules), kan eenvoudig compleet gerefactored worden. Hoe-
wel het bijna duizend regels code is (maar veel regels daarvan zijn commentaar),
kan men eenvoudig de hele arbitrator herschrijven, omdat het enkel logica bevat
die de losse modules aan elkaar linkt. Dus indien er bijvoorbeeld een bottleneck
zou gevonden worden die zich enkel in bepaalde situaties voordoet omwille van
een fout in het ontwerp van de arbitrator, kan dit relatief eenvoudig opgevangen

v

worden, omdat alle logica van de daemon in een enkele module zit.
Omdat het onmogelijk is om zeker te zijn dat de daemon correct en betrouwbaar
werkt in iedere omgeving en iedere mogelijke configuratie, is het aan te raden
dat een bedrijf eerst haar use case simuleert en verifieert dat de daemon zoals ge-
wenst functioneert in die simulatie. Hopelijk trekt dit project voldoende mensen
aan die er aan werken om het verder geschikt te maken voor meer situaties.

Een Drupal module om de integratie met CDNs te vereenvoudigen werd ook
geschreven: de CDN integratie module. Echter, voordat deze kon geschreven
worden, was het nodig om een patch voor Drupal core te schrijven, omdat het
nodig is om de URLs naar bestanden te kunnen aanpassen. Indien deze URLs
niet aanpasbaar zijn (zoals het geval is voor Drupal 6), kunnen ze ook niet aan-
gepast worden om naar een CDN te verwijzen.
Een patch voor Drupal 7 (deze versie van Drupal is momenteel in ontwikkeling)
— met unit tests want dat is een vereiste — om deze functionaliteit deel te la-
ten uitmaken van Drupal in de toekomst, heeft zeer positieve reviews gekregen,
maar moet nog steeds door het minutieuse peer review proces gaan. Het is zeer
waarschijnlijk dat het binnenkort gecommit zal worden.
Er zijn twee modi beschikbaar in de Drupal module: eenvoudig en geavanceerd.
In de geavanceerde modus kan enkel gebruik gemaakt worden van Origin Pull
CDN’s. Maar omdat het gebruiken van dit soort CDN’s nu zeer eenvoudig wordt
dankzij deze module, terwijl het vroeger een reeks manuele stappen vereiste, is
dit alleen al erg nuttig. Echter, in de geavanceerde modus wordt het pas echt
interessant: dan wordt de database van gesynchroniseerde bestanden gebruikt
die door de daemon werd aangemaakt en wordt onderhouden. Dan wordt de
URL van een bestand op de CDN opgezocht, waarna deze URL wordt gebruikt.
Het is zelfs mogelijk om een speciale callback functie te implementeren die kan
gebruikt worden om een specifieke server te selecteren, op basis van de eigen-
schappen van de gebruiker (locatie, type lidmaatschap of wat dan ook).
Deze module is ook klaar voor gebruik in productie.

De feedback van bedrijven was teleurstellend wat betreft de hoeveelheid maar
overweldigend positief. Op meer positieve feedback zou ik niet gehoopt kunnen
hebben. Het potentieel van de daemon werd sterk gewaardeerd. De codestruc-
tuur van de daemon werd beschreven als “duidelijk en zelfverklarend” en de
documentatie (van de daemon zelf en de beschrijving ervan in de bachelorproef
tekst) als “zeer duidelijk”. Het zorgde er blijkbaar zelfs voor dat een reviewer er
spijt van kreeg dat hij zijn bachelor graad niet voltooid heeft. Deze reviewer was
zelfs zo enthousiast dat hij al begonnen was met het schrijven van patches voor
de daemon, zodat die beter inzetbaar was in zijn infrastructuur. Dit suggereert
dat het mogelijk haalbaar is dat de daemon een levendig open source project
wordt.

Ten slotte bevestigden de resultaten van mijn test case de stelling dat het inte-
greren van Drupal met een CDN de page loading performance kan verbeteren.
Hoewel de resultaten (die gelogd worden door middel van de Episodes module)
niet zo expliciet waren als ze zouden kunnen geweest zijn voor een website rijk
aan media (mijn test case was een website die arm was aan media), was het
verschil nog steeds duidelijk te onderscheiden in de grafieken (die gegenereerd
werden door de Episodes Server module). Ondanks het feit dat de website al

vi

geoptimaliseerd was aan de hand van de mechanismen die standaard in Drupal
aanwezig zijn, resulteerde de integratie met een CDN (via de CDN integratie
module en de daemon) in een duidelijke algemene wereldwijde verbetering van
de page loading performance.

vii

Contents

1 Terminology 1

2 Definition 3

3 Drupal 4

4 Why it matters 6

5 Key Properties of a CDN 7

6 Profiling tools 9

6.1 UA Profiler . 9

6.2 Cuzillion . 9

6.3 YSlow . 10

6.4 Hammerhead . 12

6.5 Apache JMeter . 14

6.6 Gomez/Keynote/WebMetrics/Pingdom 15

6.6.1 Limited number of measurement points 15

6.6.2 No real-world browsers . 15

6.6.3 Unsuited for Web 2.0 . 16

6.6.4 Paid & closed source . 16

6.7 Jiffy/Episodes . 16

6.7.1 Jiffy . 16

6.7.2 Episodes . 17

6.8 Conclusion . 20

7 The state of Drupal’s page loading performance 21

viii

8 Improving Drupal: Episodes integration 22

8.1 The goal . 22

8.2 Making episodes.js reusable . 24

8.3 Episodes module: integration with Drupal 25

8.3.1 Implementation . 25

8.3.2 Screenshots . 27

8.4 Episodes Server module: reports 30

8.4.1 Implementation . 30

8.4.2 Screenshots . 31

8.4.3 Desired future features . 31

8.5 Insights . 33

8.6 Feedback from Steve Souders . 34

9 Daemon 35

9.1 Goals . 35

9.2 Configuration file design . 37

9.3 Python modules . 38

9.3.1 filter.py . 38

9.3.2 pathscanner.py . 40

9.3.3 fsmonitor.py . 41

9.3.4 persistent queue.py and persistent list.py 43

9.3.5 Processors . 44

9.3.6 Transporters . 48

9.3.7 config.py . 52

9.3.8 daemon thread runner.py 53

9.4 Putting it all together: arbitrator.py 53

ix

9.4.1 The big picture . 53

9.4.2 The flow . 54

9.4.3 Pipeline design pattern 56

9.5 Performance tests . 59

9.6 Possible further optimizations . 60

9.7 Desired future features . 60

10 Improving Drupal: CDN integration 61

10.1 Goals . 61

10.2 Drupal core patch . 62

10.3 Implementation . 63

10.4 Comparison with the old CDN integration module 63

10.5 Screenshots . 64

11 Used technologies 70

12 Feedback from businesses 71

13 Test case: DriverPacks.net 74

14 Conclusion 84

x

1 Terminology

above the fold The initially visible part of a web page: the part that you can
see without scrolling

AHAH Asynchronous HTML And HTTP. Similar to AJAX, but the transfered
content is HTML instead of XML.

base path The relative path in a URL that defines the root of a web site. E.g.
if the site http://example.com/ is where a web site lives, then the base
path is /. If you have got another web site at http://example.com/subsite/,
then the base path for that web site is /subsite/.

browser A web browser is an application that runs on end user computers
to view web sites (which live on the World Wide Web). Examples are
Firefox, Internet Explorer, Safari and Opera.

CDN A content delivery network (CDN) is a collection of web servers dis-
tributed across multiple locations to deliver content more efficiently to
users. The server selected for delivering content to a specific user is typi-
cally based on a measure of network proximity.

component A component of a web page, this can be a CSS style sheet, a
JavaScript file, an image, a font, a movie file, et cetera.

CSS sprite An image that actually contains a grid of other images. Through
CSS, each image in the grid can then be accessed (and displayed to the
end user). The benefit is that instead of having as many HTTP requests
as there are images in the grid, there is now a single HTTP request,
reducing the number of round trips and thereby increasing the perceived
page loading speed.

document root The absolute path on the file system of the web server that
corresponds with the root directory of a web site. This is typically some-
thing like /htdocs/example.com.

Drupal behaviors Behaviors are event-triggered actions that attach to HTML
elements, enhancing default non-JavaScript UIs. Through this system,
behaviors are also attached automatically to new HTML elements loaded
through AHAH/AJAX and HTML elements to which the behaviors have
already been applied are automatically skipped.

episode An episode in the page loading sequence.

Episodes The Episodes framework [52] (note the capital ’e’).

internationalization The process of designing a software application so that
it can be adapted to various languages and regions without engineering
change.

lazy loading Deferring the loading of something until it is actually needed. In
the context of web pages, lazy loading a file implies that it will not be
loaded until the end user will actually get to see it.

1

localization The process of adapting internationalized software for a specific
region or language by adding locale-specific components and translating
text.

page loading performance The time it takes to load a web page and all its
components.

page rendering performance The time the server needs to render a web
page.

PoP A Point of Presence is an access point to the internet where multiple
Internet Service Providers connect with each other.

prefetching Loading something when it not yet needed. In the context of
web pages, prefetching a file implies that it will be cached by the browser
before it is actually used in a web page.

SLA Service-Level Agreement, part of a service contract where the level of
service is formally defined. In practice, the term SLA is sometimes used
to refer to the contracted delivery time (of the service) or performance.

web page An (X)HTML document that potentially references components.

2

2 Definition

When an end user loads a web page, the time perceived by him until the page
has loaded entirely is called the end user response time. Unlike what you might
think, the majority of this time is not spent at the server, generating the page!
The generating (back-end) and transport of the HTML document (front-end)
is typically only 10-20% of the end user response time [1]. The other 80-90%
of the time is spent on loading the components (CSS stylesheets, JavaScript,
images, movies, et cetera) in the page (front-end only). Figure 1 clarifies this
visually:

Figure 1: End user response time of a typical web page.

It should be obvious now that it is far more effective to focus on front-end
performance than it is to focus on back-end performance, because it has got a
greater potential. It is also easier to optimize than the back-end, because instead
of having to profile the entire codebase through which the page is generated
(which is necessary for optimizing the back-end performance), you can simply
change where in the HTML files are being referenced and possibly also replacing
the URLs to use a CDN instead. These measures are clearly far more easy to
implement.

3

3 Drupal

Drupal [2] is a content management system (CMS), although it has become
more of a content management framework (CMF). The difference between the
two is that the former is a system with predefined rules, or with relatively little
flexibility. The latter is — as the name already indicates — a framework which
still needs to be configured to suit your needs and therefor offers more flexibility.

History

It is an open source project, started in 2000 by Dries Buytaert, whom was then
still studying at the University of Antwerp. He built a small news web site
with a built-in web board, allowing his friends in the same dorm to leave notes
or to announce when they were having dinner. After graduation, they decided
they wanted to stay in touch with each other, so they wanted to keep this site
online. Dries wanted to register the domain name dorp.org (the Dutch word
for “village”), which was considered a fitting name. But he made a typo and
registered drop.org.
drop.org’s audience changed as its members began talking about new web tech-
nologies, such as syndication, rating and distributed authentication. The ideas
resulting from those discussions were implemented on drop.org itself.
Only later, in 2001, Dries released the software behind drop.org as “Drupal”.
The purpose was to enable others to use and extend the experimentation plat-
form so that more people could explore new paths for development. The name
Drupal, pronounced ”droo-puhl,” derives from the English pronunciation of the
Dutch word ”druppel,” which means ”drop” .

Figure 2: Drupal’s mascotte: Druplicon.

What makes it different?

There are a couple of things that separate Drupal from most other CMSes and
CMFs. For starters, Drupal has a set of principles [4] it strictly adheres to,
amongst which is this one:

Drupal should also have minimal, widely-available server-side
software requirements. Specifically, Drupal should be fully opera-
tional on a platform with a web server, PHP, and either MySQL or
PostgreSQL.

4

dorp.org
drop.org
drop.org
drop.org
drop.org

This is the reason PHP was chosen as the language to write Drupal in. PHP is
the justification for some people to not even try Drupal. But it is also a reason
why so many web sites today are running Drupal, and why its statistics (and
the popularity of its web site) have been growing exponentially for years [5, 6].
By settling for the lowest common denominator and creating a robust, flexible
platform on top of that, it can scale from a simple blogger (such as myself) to
the huge media company (such as Sony BMG, Universal Music, Warner Bros,
Popular Science, Disney, and so on), non-profit organizations (amongst which
are Amnesty International, the United Nations and Oxfam), schools (Harvard,
MIT and many more), even governments (including the Belgian, French, U.S.
and New Zealand) and important organisations such as NASA and NATO. The
list is seemingly endless [7].

Drupal is also strongly focused on innovation, and always closely follows (or
leads!) the cutting edge of the world wide web. The Drupal community even
has a saying for this:

the drop is always moving [8]

This means there will always be an upgrade from one major Drupal core version
to the next, but it will only preserve your data, your code will stop working.
This is what prevents Drupal from having an excessive amount of legacy code
that many other projects suffer from. Each new major version contains many,
often radical, changes in the APIs.

Maturity

Indicators of project maturity are also present: Drupal has a set of coding
standards [9] that must be followed strictly. For even the slightest deviation (a
single missing space), a patch can be marked as ’needs work’. It also has a large
security team [10] which releases security advisories whenever a security flaw is
found in either Drupal core or any of the contributed modules.

Community

That brings us to the final part of this brief general introduction to Drupal:
the gold of Drupal is in its community. The community is in general very
eager to help getting newcomers acquainted with the ins and outs of Drupal.
Many people have learned their way through the Drupal APIs by helping others
(including myself). The result of this vibrant community is that there is a very
large collection of more than 4000 modules [11] and more than 500 themes [12]
available for Drupal, albeit of varying quality. This is what enables even the less
technically adept to build a web site with complex interactions, without writing
a single line of code.

5

4 Why it matters

Page loading performance matters for a single reason:

Users care about performance!

Your web site’s visitors will not be timing the page loads themselves, but they
will browse elsewhere when you are forcing them to wait too long. Fast web
sites are rewarded, slow web sites are punished. Fast web sites get more visitors,
have happier visitors and their visitors return more often. If the revenue of your
company is generated through your web site, you will want to make sure that
page loading performance is as good as possible, because it will maximize your
revenue as well.

Some statistics:

• Amazon: 100 ms of extra load time caused a 1% drop in sales [13]

• Yahoo!: 400 ms of extra load time caused a 5-9% drop in full-page traffic
(meaning that they leave before the page has finished loading) [13]

• Google: 500 ms of extra load time caused 20% fewer searches [13]

• Google: trimming page size by 30% resulted in 30% more map requests
[14]

It is clear that even the smallest delays can have disastrous and wondrous effects.

Now, why is this important to Drupal – because this bachelor thesis is about
improving Drupal’s page loading performance in particular? Because then the
Drupal experience is better: a faster web site results in happier users and de-
velopers. If your site is a commercial one, either through ads or a store, then it
also impacts your revenue. More generally, a faster Drupal would affect many:

• Drupal is increasingly being used for big, high-traffic web sites, thus a
faster Drupal would affect a lot of people

• Drupal is still growing in popularity (according to its usage statistics,
which only include web sites with the Update Status module enabled,
there are over 140,000 web sites as of February 22, 2009, see [15]) and
would therefor affect ever more people. Near the end of my bachelor
thesis, on June 14, 2009, this had already grown to more than 175,000
web sites.

• Drupal is international, thanks to its internationalization and localization
support, and thanks to that it is used for sites with very geographically
dispersed audiences (whom face high network latencies) and developing
countries (where low-speed internet connections are commonplace). A
faster Drupal would make a big difference there as well.

6

5 Key Properties of a CDN

I will repeat the definition from the terminology section:

A content delivery network (CDN) is a collection of web servers
distributed across multiple locations to deliver content more effi-
ciently to users. The server selected for delivering content to a spe-
cific user is typically based on a measure of network proximity.

It is extremely hard to decide which CDN to use. In fact, by just looking at a
CDN’s performance, it is close to impossible [17, 18]!

That is why CDNs achieve differentiation through their feature sets, not through
performance. Depending on your audience, the geographical spread (the number
of PoPs around the world) may be very important to you. A 100% SLA is also
nice to have — this means that the CDN guarantees that it will be online 100%
of the time.
You may also choose a CDN based on the population methods it supports. There
are two big categories here: push and pull. Pull requires virtually no work on
your side: all you have to do, is rewrite the URLs to your files: replace your
own domain name with the CDN’s domain name. The CDN will then apply
the Origin Pull technique and will periodically pull the files from the origin
(that is your server). How often that is, depends on how you have configured
headers (particularly the Expires header). It of course also depends on the
software driving the CDN – there is no standard in this field. It may also result
in redundant traffic because files are being pulled from the origin server more
often than they actually change, but this is a minor drawback in most situations.
Push on the other hand requires a fair amount of work from your part to sync
files to the CDN. But you gain flexibility because you can decide when files are
synced, how often and if any preprocessing should happen. That is much harder
to do with Origin Pull CDNs. See table 1 for an overview on this.
It should also be noted that some CDNs, if not most, support both Origin Pull
and one or more push methods.
The last thing to consider is vendor lock-in. Some CDNs offer highly specialized
features, such as video transcoding. If you then discover another CDN that is
significantly cheaper, you cannot easily move, because you are depending on
your current CDN’s specific features.

Pull Push
transfer protocol none FTP, SFTP, WebDAV, Amazon S3 . . .

advantages virtually no setup flexibility, no redundant traffic
disadvantages no flexibility, redundant traffic setup

Table 1: Pull versus Push CDNs comparison table.

My aim is to support the following CDNs in this thesis:

7

• any CDN that supports Origin Pull

• any CDN that supports FTP

• Amazon S3 [97] and Amazon CloudFront [98]. Amazon S3 (or Simple
Storage Service in full) is a storage service that can be accessed via the
web (via REST and SOAP interfaces). It is used by many other web
sites and web services. It has a pay-per-use pricing model: per GB of file
transfer and per GB of storage.
Amazon S3 is designed to be a storage service and only has servers in
one location in the U.S. and one location in Europe. Recently, Amazon
CloudFront has been added. This is a service on top of S3 (files must be
on S3 before they can be served from CloudFront), which has edge servers
everywhere in the world, thereby acting as a CDN.

8

6 Profiling tools

If you can not measure it, you can not improve it.
Lord Kelvin

The same applies to page loading performance: if you cannot measure it, you
cannot know which parts have the biggest effect and thus deserve your focus.
So before doing any real work, we will have to figure out which tools can help
us analyzing page loading performance. “Profiling” turns out to be a more
accurate description than “analyzing”:

In software engineering, performance analysis, more commonly
today known as profiling, is the investigation of a program’s behavior
using information gathered as the program executes. The usual goal
of performance analysis is to determine which sections of a program
to optimize — usually either to increase its speed or decrease its
memory requirement (or sometimes both). [19]

So a list of tools will be evaluated: UA Profiler, Cuzillion, YSlow, Hammerhead,
Apache JMeter, Gomez/Keynote/WebMetrics/Pingdom and Jiffy/Episodes. From
this fairly long list, the tools that will be used while improving Drupal’s page
loading performance will be picked, based on two factors:

1. How the tool could help improve Drupal core’s page loading performance.

2. How the tool could help Drupal site owners to profile their site’s page
loading performance.

6.1 UA Profiler

UA Profiler [20] is a crowd-sourced project for gathering browser performance
characteristics (on the number of parallel connections, downloading scripts with-
out blocking, caching, et cetera). The tests run automatically when you navigate
to the test page from any browser – this is why it is powered by crowd sourcing.

It is a handy reference to find out which browser supports which features related
to page loading performance.

6.2 Cuzillion

Cuzillion [21] was introduced [22] on April 25, 2008 so it is a relatively new tool.
Its tag line, “‘cuz there are zillion pages to check” indicates what it is about:
there are a lot of possible combinations of stylesheets, scripts and images. Plus
they can be external or inline. And each combination has different effects.
Finally, to further complicate the situation, all these combinations depend on
the browser being used. It should be obvious that without Cuzillion, it is an
insane job to figure out how each browser behaves:

9

Before I would open an editor and build some test pages. Firing
up a packet sniffer I would load these pages in different browsers
to diagnose what was going on. I was starting my research on ad-
vanced techniques for loading scripts without blocking and realized
the number of test pages needed to cover all the permutations was
in the hundreds. That was the birth of Cuzillion.

Cuzillion is not a tool that helps you analyze any existing web page. Instead,
it allows you to analyze any combination of components. That means it is a
learning tool. You could also look at it as a browser profiling tool instead of all
other listed tools, which are page loading profiling tools.

Here is a simple example to achieve a better understanding. How does the
following combination of components (in the <body> tag) behave in different
browsers?

1. an image on domain 1 with a 2 second delay

2. an inline script with a 2 second execution time

3. an image on domain 1 with a 2 second delay

First you create this setup in Cuzillion (see figure 3). This generates a unique
URL. You can then copy this URL to all browsers you would like to test.

As you can see, Safari and Firefox behave very differently. In Safari (see figure
4), the loading of the first image seems to be deferred until the inline script
has been executed (the images are displayed when the light purple bars become
dark purple). In Firefox (see figure 5), the first image is immediately rendered
and after a delay of 2 seconds – indeed the execution time of the inline script
– the second image is rendered (the images are displayed when the gray bars
stop). Without going into details about this, it should be clear that Cuzillion is
a simple, yet powerful tool to learn about browser behavior, which can in turn
help to improve the page loading performance.

6.3 YSlow

YSlow [27] is a Firebug [25] extension (see figure 6) that can be used to analyze
page loading performance through thirteen rules. These were part of the orig-
inal fourteen rules [29] – of which there are now thirty-four – of “Exceptional
Performance” [28], as developed by the Yahoo! performance team.

YSlow 1.0 can only evaluate these thirteen rules and has a hardcoded grading
algorithm. You should also remember that YSlow just checks how well a web
page implements these rules. It analyzes the content of your web page (and the
headers that were sent with it). For example, it does not test the latency or
speed of a CDN, it just checks if you are using one. As an example, because

10

Figure 3: The example situation created in Cuzillion.

Figure 4: The example situation in Safari 3.

11

Figure 5: The example situation in Firefox 3.

you have to tell YSlow (via Firefox’ about:config) what the domain name of
your CDN is, you can even fool YSlow into thinking any site is using a CDN:
see 7.

That, and the fact that some of the rules it analyzes are only relevant to very
big web sites. For example, one of the rules (#13, “Configure ETags”) is only
relevant if you are using a cluster of web servers. For a more in-depth article
on how to deal with YSlow’s evaluation of your web sites, see [30]. YSlow 2.0
[31] aims to be more extensible and customizable: it will allow for community
contributions, or even web site specific rules.

Since only YSlow 1.0 is available at the time of writing, I will stick with that.
It is a very powerful and helpful tool as it stands, it will just get better. But
remember the two caveats: it only verifies rules (it does not measure real-world
performance) and some of the rules may not be relevant for your web site.

6.4 Hammerhead

Hammerhead [23, 24] is a Firebug [25] extension that should be used while de-
veloping. It measures how long a page takes to load and it can load a page
multiple times, to calculate the average and mean page load times. Of course,
this is a lot less precise than real-world profiling, but it allows you to profile

12

Figure 6: YSlow applied to drupal.org.

(a) The original YSlow analysis. (b) The resulting YSlow analysis.

Figure 7: Tricking YSlow into thinking drupal.org is using a CDN.

13

Figure 8: Hammerhead.

while you are working. It is far more effective to prevent page loading perfor-
mance problems due to changes in code, because you have the test results within
seconds or minutes after you have made these changes!

Of course, you could also use YSlow (see section 6.3) or FasterFox [26], but then
you have to load the page multiple times (i.e. hammer the server, this is where
the name comes from). And you would still have to set up the separate testing
conditions for each page load that Hammerhead already sets up for you: empty
cache, primed cache and for the latter there are again two possible situations:
disk cache and memory cache or just disk cache. Memory cache is of course
faster than disk cache; that is also why that distinction is important. Finally,
it supports exporting the resulting data into CSV format, so you could even
create some tools to roughly track page loading performance throughout time.
A screenshot of Hammerhead is provided in figure 8.

6.5 Apache JMeter

Apache JMeter [33] is an application designed to load test functional behavior
and measure performance. In the perspective of profiling page loading perfor-
mance, the relevant features are: loading of web pages with and without its
components and measuring the response time of just the HTML or the HTML
and all the components it references.

However, it has several severe limitations:

• Because it only measures from one location – the location from where it
is run, it does not give a good big picture.

• It is not an actual browser, so it does not download components referenced
from CSS or JS files.

• Also because it is not an actual browser, it does not behave the same as
browsers when it comes to parallel downloads.

14

• It requires more setup than Hammerhead (see section 6.4), so it is less
likely that a developer will make JMeter part of his workflow.

It can be very useful in case you are doing performance testing (How long
does the back-end need to generate certain pages?), load testing (how many
concurrent users can the back-end/server setup handle?) and stress testing
(how many concurrent users can it handle until errors ensue?).
To learn more about load testing Drupal with Apache JMeter, see [34, 35]

6.6 Gomez/Keynote/WebMetrics/Pingdom

Gomez [36], KeyNote [37], WebMetrics [38] and Pingdom [39] are examples of
third-party (paid) performance monitoring systems.

They have four major disadvantages:

1. limited number of measurement points

2. no real-world browsers are used

3. unsuited for Web 2.0

4. paid & closed source

6.6.1 Limited number of measurement points

These services poll your site at regular or irregular intervals. This poses analysis
problems: for example, if one of your servers is very slow just at that one moment
that any of these services requests a page, you will be told that there is a major
issue with your site. But that is not necessarily true: it might be a fluke.

6.6.2 No real-world browsers

Most, if not all of these services use their own custom clients [46]. That implies
their results are not a representation of the real-world situation, which means
you cannot rely upon these metrics for making decisions: what if a commonly
used real-world browser behaves completely differently? Even if the services
would all use real-world browsers, they would never reflect real-world perfor-
mance, because each site has different visitors and therefor also a different mix
of browsers.

15

6.6.3 Unsuited for Web 2.0

The problem with these services is that they still assume the World Wide Web
is the same as it was 10 years ago, where JavaScript was rather a scarcity than
the abundance it is today. They still interpret the onload event as the “end
time” for response time measurements. In Web 1.0, that was fine. But as the
adoption of AJAX [40] has grown, the onload event has become less and less
representative of when the page is ready (i.e. has completely loaded), because
the page can continue to load additional components. For some web sites, the
“above the fold” section of a web page has been optimized, thereby loading
“heavier” content later, below the fold. Thus the “page ready” point in time is
shifted from its default.

In both of these cases, the onload event is too optimistic [49].

There are two ways to measure Web 2.0 web sites [50]:

1. manual scripting : identify timing points using scripting tools (Selenium
[41], Keynote’s KITE [42], et cetera). This approach has a long list of
disadvantages: low accuracy, high switching costs, high maintenance costs,
synthetic (no real-world measurements).

2. programmatic scripting : timing points are marked by JavaScript (Jiffy
[47], Gomez Script Recorder [43], et cetera). This is the preferred ap-
proach: it has lower maintenance costs and a higher accuracy because the
code for timing is included in the other code and measures real user traffic.
If we would now work on a shared implementation of this approach, then
we would not have to reinvent the wheel every time and switching costs
would be much lower. See the Jiffy/Episodes later on.

6.6.4 Paid & closed source

The end user is dependent upon the third party service to implement new in-
strumentations and analyses. It is typical for closed source applications to only
implement the most commonly asked feature and because of that, the end user
may be left out in the cold. There is a high cost for the implementation and a
also a very high cost when switching to a different third party service.

6.7 Jiffy/Episodes

6.7.1 Jiffy

Jiffy [45, 46, 47] is designed to give you real-world information on what is ac-
tually happening within browsers of users that are visiting your site. It shows
you how long pages really take to load and how long events that happen while

16

or after your page is loading really take. Especially when you do not control
all the components of your web site (e.g. widgets of photo and music web sites,
contextual ads or web analytics services), it is important that you can moni-
tor their performance. It overcomes four major disadvantages that were listed
previously:

1. it can measure every page load if desired

2. real-world browsers are used, because it is just JavaScript code that runs
in the browser

3. well-suited for Web 2.0, because you can configure it to measure anything

4. open source

Jiffy consists of several components:

• Jiffy.js: a library for measuring your pages and reporting measurements

• Apache configuration: to receive and log measurements via a specific query
string syntax

• Ingestor: parse logs and store in a database (currently only supports Or-
acle XE)

• Reporting toolset

• Firebug extension [48], see figure 9

Jiffy was built to be used by the WhitePages web site [44] and has been running
on that site. At more than 10 million page views per day, it should be clear
that Jiffy can scale quite well. It has been released as an open source project,
but at the time of writing, the last commit was on July 25, 2008. So it is a dead
project.

6.7.2 Episodes

Episodes [52, 53] is very much like Jiffy. There are two differences:

1. Episodes’ goal is to become an industry standard. This would imply
that the aforementioned third party services (Gomez/Keynote/WebMet-
rics/Pingdom) would take advantage of the the instrumentations imple-
mented through Episodes in their analyses.

2. Most of the implementation is built into browsers (window.postMessage(),
addEventListener()), which means there is less code that must be down-
loaded. (Note: the newest versions of browsers are necessary: Internet Ex-
plorer 8, Firefox 3, WebKit Nightlies and Opera 9.5. An additional back-
wards compatibility JavaScript file must be downloaded for older browsers.

17

Figure 9: Jiffy.

18

Figure 10: Episodes.

Steve Souders outlines the goals and vision for Episodes succinctly in these two
paragraphs:

The goal is to make Episodes the industrywide solution for mea-
suring web page load times. This is possible because Episodes has
benefits for all the stakeholders. Web developers only need to learn
and deploy a single framework. Tool developers and web metrics ser-
vice providers get more accurate timing information by relying on
instrumentation inserted by the developer of the web page. Browser
developers gain insight into what is happening in the web page by
relying on the context relayed by Episodes.

Most importantly, users benefit by the adoption of Episodes.
They get a browser that can better inform them of the web page’s
status for Web 2.0 apps. Since Episodes is a lighter weight design
than other instrumentation frameworks, users get faster pages. As
Episodes makes it easier for web developers to shine a light on per-
formance issues, the end result is an Internet experience that is faster
for everyone.

A couple of things can be said about the current codebase of Episodes:

• There are two JavaScript files: episodes.js and episodes-compat.js.
The latter is loaded on-the-fly when an older browser is being used that
does not support window.postMessage(). These files are operational but
have not had wide testing yet.

• It uses the same query string syntax as Jiffy uses to perform logging, which
means Jiffy’s Apache configuration, ingestor and reporting toolset can be
reused, at least partially.

• It has its own Firebug extension, see figure 10.

So, Episodes’ very raison d’existence is to achieve a consensus on a JavaScript-
based page loading instrumentation toolset. It aims to become an industry

19

standard and is maintained by Steve Souders, who is currently on Google’s pay-
roll to work full-time on all things related to page loading performance (which
suggests we might see integration with Google’s Analytics [51] service in the
future). Add in the fact that Jiffy has not been updated since its initial release,
and it becomes clear that Episodes is the better long-term choice.

6.8 Conclusion

There is not a single, “do-it-all” tool that you should use. Instead, you should
wisely combine all of the above tools. Use the tool that fits the task at hand.

However, for the scope of this thesis, there is one tool that jumps out: YSlow. It
allows you to carefully analyze which things Drupal could be doing better. It is
not necessarily meaningful in real-world situations, because it e.g. only checks
if you are using a CDN, not how fast that CDN is. But the fact that it tests
whether a CDN is being used (or Expired headers, or gzipped components, or
. . .) is enough to find out what can be improved, to maximize the potential
performance.
This kind of analysis is exactly what I will perform in the next section.

There is one more tool that jumps out for real, practical use: Episodes. This
tool, if properly integrated with Drupal, would be a key asset to Drupal, be-
cause it would enable web site owners to track the real-world page loading
performance. It would allow module developers to support Episodes. This, in
turn, would be a good indicator for a module’s quality and would allow the
web site owner/administrator/developer to carefully analyze each aspect of his
Drupal web site.
I have created this integration as part of my bachelor thesis, see section 8.

20

7 The state of Drupal’s page loading performance

So you might expect that Drupal has already invested heavily in improving
its page loading performance. Unfortunately, that is not true. Hopefully this
bachelor thesis will help to gain some developer attention.

Because of this, the article I wrote more than a year ago is still completely
applicable. It does not make much sense to just rephrase the article here in
my thesis text, so instead I would like to forward you to that article [16] for
the details. The article analyzes Drupal based on the 14 rules defined in Steve
Souder’s High Performance Web Sites book.

The essence of the article is that Drupal does some things right already, but
many more not yet. The things Drupal did wrong then — and still does wrong
today because nothing has changed in this area — yet:

• Static files (CSS, JavaScript, images) should be served with proper HTTP
headers so that the browser can cache them and reduce the number of
HTTP requests for each page load. Especially the Expires header is im-
portant here.

• To allow for CDN integration in Drupal, the ability to dynamically alter
file URLs is needed, but this is not supported yet.

• CSS and JS files should be served GZIPped when the browser supports it.

• JavaScript files should be at the bottom (just before the closing </body>
tag) whenever possible.

• JavaScript files should be minified.

• Drupal should provide a mechanism to render the same content in multiple
formats: (X)HTML (for the regular browser), partial HTML or JSON
(for AHAH), XML (for AJAX) and so on. You should be able to set
transformations, including cacheability and GZIPability per format.

• CSS sprites should be generated automatically.

21

8 Improving Drupal: Episodes integration

The work I am doing as part of bachelor thesis on improving Drupal’s page
loading performance should be practical, not theoretical. It should have a real-
world impact.

To ensure that that also happens, I wrote the Episodes module [54]. This module
integrates the Episodes framework for timing web pages (see section 6.7.2) with
Drupal on several levels – all without modifying Drupal core:

• Automatically includes the necessary JavaScript files and settings on each
appropriate page.

• Automatically inserts the crucial initialization variables at the beginning
of the head tag.

• Automatically turns each behavior (in Drupal.behaviors) into its own
episode.

• Provides a centralized mechanism for lazy loading callbacks that perform
the lazy loading of content. These are then also automatically measured.

• For measuring the css, headerjs and footerjs episodes, you need to
change a couple of lines in the page.tpl.php file of your theme. That is
the only modification you have to make by hand. It is acceptable because
a theme always must be tweaked for a given web site.

• Provides basic reports with charts to make sense of the collected data.

I actually wrote two Drupal modules: the Episodes module and the Episodes
Server module. The former is the actual integration and can be used without
the latter. The latter can be installed on a separate Drupal web site or on the
same. It provides basic reports. It is recommended to install this on a separate
Drupal web site, and preferably even a separate web server, because it has to
process a lot of data and is not optimized. That would have led me too far
outside of the scope of this bachelor thesis.

You could also choose to not enable the Episodes Server module and use an
external web service to generate reports, but for now, no such services yet exist.
This void will probably be filled in the next few years by the business world. It
might become the subject of my master thesis.

8.1 The goal

The goal is to measure the different episodes of loading a web page. Let me
clarify that via a timeline, while referencing the HTML in listing 1.

The main measurement points are:

22

Listing 1: Sample Drupal HTML file.
1 < !DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0 S t r i c t //EN”
2 ”http ://www.w3 . org /TR/xhtml1/DTD/xhtml1−s t r i c t . dtd”>
3 <html xmlns=”http ://www.w3 . org /1999/ xhtml” xml : lang=”en” lang=”en” dir=” l t r ”>
4 <head>
5 <t i t l e>Sample Drupal HTML</ t i t l e>
6 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=utf−8” />
7 <l ink rel=” shor tcut i con ” href=”/misc/ f av i con . i c o ” type=”image/x−i con ” />
8 <l ink type=” text / c s s ” re l=” s t y l e s h e e t ” media=” a l l ” href=”main . c s s ” />
9 <l ink type=” text / c s s ” re l=” s t y l e s h e e t ” media=” pr in t ” href=”more . c s s ” />

10 <script type=” text / j a v a s c r i p t ” src=”main . j s ”></ script>
11 <script type=” text / j a v a s c r i p t ”>
12 < !−−//−−>< ! [CDATA[//>< !−−
13 jQuery . extend (Drupal . s e t t ing s , { ”basePath” : ”/ drupal /” , ”more” : true }) ;
14 //−−>< !]]>
15 </ script>
16 < !−−[i f l t IE 7]>
17 <l ink type=” text / c s s ” re l=” s t y l e s h e e t ” media=” a l l ” href=” f ix−i e . c s s />
18 < ! [e nd i f]−−>
19 </head>
20 <body>
21 <!−−
22 l o t s
23 o f
24 HTML
25 here
26 −−>
27 <s c r i p t type=”text/ j a v a s c r i p t ” s r c=”more . j s ”></s c r i p t >
28 </body>
29 </html>

• starttime: time of requesting the web page (when the onbeforeunload
event fires, the time is stored in a cookie); not in the HTML file

• firstbyte: time of arrival of the first byte of the HTML file (the JavaScript
to measure this time should be as early in the HTML as possible for
highest possible accuracy); line 1 of the HTML file

• domready: when the entire HTML document is loaded, but just the
HTML, not the referenced files

• pageready: when the onload event fires, this happens when also all refer-
enced files are loaded

• totaltime: when everything, including lazily-loaded content, is loaded (i.e.
pageready + the time to lazy-load content)

Which make for these basic episodes:

• backend episode = firstbyte - starttime

• frontend episode = pageready - firstbyte

• domready episode = domready - firstbyte, this episode is contained within
the frontend episode

• totaltime episode = totaltime - starttime, this episode contains the back-
end and frontend episodes

23

These are just the basic time measurements and episodes. It is possible to also
measure the time it took to load the CSS (lines 8-9, this would be the css
episode) and JavaScript files in the header (line 10, this would be the headerjs
episode) and in the footer (line 27, this would be the footerjs episode), for
example. It is possible to measure just about anything you want.

For a visual example of all the above, see figure 13.

8.2 Making episodes.js reusable

The episodes.js file provided at the Episodes example [55] is in fact just a
rough sample implementation, an implementation that indicates what it should
look like. It contained several hardcoded URLs, does not measure the sensible
default episodes, contains a few bugs. In short, it is an excellent and solid start,
but it needs some work to be truly reusable.

There also seems to be a bug in Episodes when used in Internet Explorer 8. It is
actually a bug in Internet Explorer 8: near the end of the page loading sequence,
Internet Explorer 8 seems to be randomly disabling the window.postMessage()
JavaScript function, thereby causing JavaScript errors. After a while of search-
ing cluelessly for the cause, I gave up and made Internet Explorer 8 also use
the backwards-compatibility script (episodes-compat.js), which overrides the
window.postMessage() method. The problem had vanished. This is not ideal,
but at least it works reliably now.
Finally, there also was a bug in the referrer matching logic, or more specifically,
it only worked reliably in Internet Explorer and intermittently worked in Fire-
fox, due to the differences between browsers in cookie handling. Because of this
bug, many backend episodes were not being measured, and now they are.

I improved episodes.js to make it reusable, so that I could integrate it with
Drupal without adding Drupal-specific code to it. I made it so that all you have
to do is something like this:

1 <head>
2
3 < !−− I n i t i a l i z e EPISODES. −−>
4 <script type=” text / j a v a s c r i p t ”>
5 var EPISODES = EPISODES | | {} ;
6 EPISODES. frontendStartTime = Number(new Date ()) ;
7 EPISODES. compatScr iptUrl = ” l i b / ep i sodes−compat . j s ” ;
8 EPISODES. l ogg ing = true ;
9 EPISODES. beaconUrl = ” ep i s ode s /beacon” ;

10 </ script>
11
12 < !−− Load episodes . j s . −−>
13 <script type=” text / j a v a s c r i p t ” src=” l i b / ep i s ode s . j s ” />
14
15 < !−− Rest of head tag . −−>
16 < !−− . . . −−>
17
18 </head>

This way, you can initialize the variables to the desired values without customiz-
ing episodes.js. Line 6 should be as early in the page as possible, because it
is the most important reference time stamp.

24

8.3 Episodes module: integration with Drupal

8.3.1 Implementation

Here is a brief overview with the highlights of what had to be done to integrate
the Episodes framework with Drupal.

• Implemented hook install(), through which I set a module weight of
-1000. This extremely low module weight ensures the hook implementa-
tions of this module are always executed before all others.

• Implemented hook init(), which is invoked at the end of the Drupal boot-
strap process. Through this hook I automatically insert the JavaScript
into the <head> tag that is necessary to make Episodes work (see section
8.2). Thanks to the extremely low module weight, the JavaScript code it
inserts is the first tag in the <head> tag.

• Also through this same hook I add Drupal.episodes.js, which provides
the actual integration with Drupal. It automatically creates an episode
for each Drupal “behavior”. (A behavior is written in JavaScript and adds
interactivity to the web page.) Each time new content is added to the page
through AHAH, Drupal.attachBehaviors() is called and automatically
attaches behaviors to new content, but not to existing content. Through
Drupal.episodes.js, Drupal’s default Drupal.attachBehaviors() method
is overridden – this is very easy in JavaScript. In this overridden version,
each behavior is automatically measured as an episode.
Thanks to Drupal’s existing abstraction and the override I have imple-
mented, all JavaScript code can be measured through Episodes without
hacking Drupal core.
A simplified version of what it does can be seen here:

Listing 2: Drupal.attachBehaviors() override.

Drupal . attachBehaviors = func t i on (context) {
u r l = document . l o c a t i o n ;

for (behavior in Drupal . behav ior s) {
window . postMessage (”EPISODES: mark : ” + behavior , u r l) ;
Drupal . behav ior s [behavior] (context) ;
window . postMessage (”EPISODES: measure : ” + behavior , u r l) ;

}
} ;

• Some of the Drupal behaviors are too meaningless to measure, so it would
be nice to be able to mark some of the behaviors as ignored. That is also
something I implemented. Basically I do this by locating every directory
in which one or more *.js files exist, create a scan job for each of these
and queue them in Drupal’s Batch API [56]. Each of these jobs scans each
*.js file, looking for behaviors. Every detected behavior is stored in the
database and can be marked as ignored through a simple UI that uses the
Hierarchical Select module [58].

25

• For measuring the css and headerjs episodes, it is necessary to make
a couple of simple (copy-and-paste) changes to the page.tpl.php of the
Drupal theme(s) you are using. These changes are explained in the README.txt
file that ships with the Episodes module. This is the only manual change
to code that can be done – it is recommended, but not required.

• And of course a configuration UI (see figure 11 and figure 12) using the
Forms API [57]. It ensures the logging URL (this is the URL through
which the collected data is logged to Apache’s log files) exists and is prop-
erly configured (i.e. returns a zero-byte file).

26

8.3.2 Screenshots

Figure 11: Episodes module settings form.

27

Figure 12: Episodes module behaviors settings form.

28

Figure 13: Results of Episodes module in the Episodes Firebug add-on.

29

8.4 Episodes Server module: reports

Only basic reports are provided, highlighting the most important statistics and
visualizing them through charts. Advanced/detailed reports are beyond the
scope of this bachelor thesis, because they require extensive performance re-
search (to be able to handle massive datasets), database indexing optimization
and usability research.

8.4.1 Implementation

• First of all, the Apache HTTP server is a requirement as this application’s
logging component is used for generating the log files. Its logging compo-
nent has been proven to be scalable, so there is no need to roll our own.
The source of this idea lies with Jiffy (see section 6.7.1 on page 16).

• The user must make some changes to his httpd.conf configuration file
for his Apache HTTP server. As just mentioned, my implementation is
derived from Jiffy’s, yet every configuration line is different.

• The ingestor parses the Apache log file and moves the data to the database.
I was able to borrow a couple of regular expressions from Jiffy’s ingestor
(which is written in Perl) but I completely rewrote it to obtain clean and
simple code, conform the Drupal coding guidelines. It detects the browser,
browser version and operating system from the User Agent that was logged
with the help of the Browser.php library [60].
Also, IPs are converted to country codes using the ip2country Drupal
module [61].
This is guaranteed to work thanks to the included meticulous unit tests.

• For the reports, I used the Google Chart API [59]. You can see an example
result in figures 15, 16 and 17. It is possible to compare the page loading
performance of multiple countries by simply selecting as many countries
as you would like in the “Filters” fieldset.

• And of course again a configuration UI (see figure 14) using the Forms
API [57]. It ensures the log file exists and is accessible for reading.

30

8.4.2 Screenshots

Figure 14: Episodes Server module settings form.

Figure 15: Episodes Server module: overall analysis.

8.4.3 Desired future features

Due to lack of time, the basic reports are . . . well . . . very basic. It would
be nice to have more charts and to be able to filter the data of the charts. In
particular, these three filters would be very useful:

1. filter by timespan: all time, 1 year, 6 months, 1 month, 1 week, 1 day

2. filter by browser and browser version

3. filter by (parts of) the URL

31

Figure 16: Episodes Server module: page loading performance analysis.

32

Figure 17: Episodes Server module: episodes analysis.

8.5 Insights

• Episodes module

– Generating the back-end start time on the server can never work
reliably because the clocks of the client (browser) and server are
never perfectly in sync, which is required. Thus, I simply kept Steve
Souders’ onbeforeunload method to log the time when a next page
was requested. The major disadvantage of this method is that it
is impossible to measure the backend episode for each page load:
it is only possible to measure the backend episode when the user
navigates through our site (more specifically, when the referrer is the
same as the current domain).

– Even just measuring the page execution time on the server cannot
work because of this same reason. You can accurately measure this
time, but you cannot relate it to the measurements in the browser.
I implemented this using Drupal’s hook boot() and hook exit()
hooks and came to this conclusion.

– On the first page load, the onbeforeunload cookie is not yet set
and therefor the backend episode cannot be calculated, which in
turn prevents the pageready and totaltime episodes from being
calculated. This is of course also a problem when cookies are disabled,
because then the backend episode can never be calculated. There is
no way around this until the day that browsers provide something
like document.requestTime.

• Episodes Server module

33

– Currently the same database as Drupal is being used. Is this scalable
enough for analyzing the logs of web sites with millions of page views?
No. Writing everything to a SQLite database would not be better.
The real solution is to use a different server to run the Episodes Server
module on or even an external web service. Better even is to log to
your own server and then send the logs to an external web service.
This way you stay in control of all your data! Because you still have
your log data, you can switch to another external web service, thereby
avoiding vendor lock-in. The main reason I opted for using the same
database, is ease of development.
Optimizing the profiling tool is not the goal of this bachelor thesis,
optimizing page loading performance is. As I already mentioned
before, writing an advanced profiling tool could be a master thesis
on its own.

8.6 Feedback from Steve Souders

I explained Steve Souders what I wanted to achieve through this bachelor thesis
and the initial work I had already done on integrating Episodes with Drupal.
This is how his reply started:

Wow.

Wow, this is awesome.

So, at least he thinks that this was a worthwhile job, which suggests that it will
probably be worthwhile/helpful for the Drupal community as well.
Unfortunately for me, Steve Souders is a very busy man, speaking at many web-
related conferences, teaching at Stanford, writing books and working at Google.
He did not manage to get back to the questions I asked him.

34

9 Daemon

So now that we have the tools to accurately (or at least representatively) measure
the effects of using a CDN, we still have to start using a CDN. Next, we will
examine how a web site can take advantage of a CDN.

As explained in section 5, there are two very different methods for populating
CDNs. Supporting pull is easy, supporting push is a lot of work. But if we
want to avoid vendor lock-in, it is necessary to be able to transparently switch
between pull and any of the transfer protocols for push. Suppose that you are
using CDN A, which only supports FTP. when you want to switch to a cheaper,
yet better CDN B, that would be a costly operation, because CDN B only
supports a custom protocol.

To further reduce costs, it is necessary that we can do the preprocessing ourselves
(be that video transcoding, image optimization or anything else). Also note that
many CDNs do not support processing of files — but it can reduce the amount
of bandwidth consumed significantly, and thereby the bill received every month.

That is why the meat of this thesis is about a daemon that makes it just as easy
to use either push or pull CDNs and that gives you full flexibility in what kind
of preprocessing you would like to perform. All you will have to do to integrate
your web site with a CDN is:

1. install the daemon

2. tell it what to do by filling out a simple configuration file

3. start the daemon

4. retrieve the URLs of the synced files from an SQLite database (so you can
alter the existing URLs to files to the ones for the CDN)

9.1 Goals

As said before, the ability to use either push or pull CDNs is an absolute ne-
cessity, as is the ability to process files before they are synced to the CDN.
However, there is more to it than just that, so here is a full list of goals.

• Easy to use: the configuration file is the interface and explain itself just
by its structure

• Transparency: the transfer protocol(s) supported by the CDN should be
irrelevant

• Mixing CDNs and static file servers

• Processing before sync: image optimization, video transcoding . . .

35

• Detect (and sync) new files instantly: through inotify on Linux, FSEvents
on Mac OS X and the FindFirstChangeNotification API or ReadDirecto-
ryChanges API on Windows (there is also the FileSystemWatcher class
for .NET)

• Robustness: when the daemon is stopped (or when it crashed), it should
know where it left off and sync all added, modified and deleted files that
it was still syncing and that have been added, modified and deleted while
it was not running

• Scalable: syncing 1,000 or 1,000,000 files – and keeping them synced –
should work just as well

• Unit testing wherever feasible

• Design for reuse wherever possible

• Low resource consumption (except for processors, which may be very de-
manding because of their nature)

• No dependencies other than Python (but processors can have additional
dependencies)

• All the logic of the daemon should be contained in a single module, to
allow for quick refactoring.

A couple of these goals need more explaining.

The transparency goal should speak for itself, but you may not yet have realized
its impact. This is what will avoid high CDN provider switching costs, that is,
it helps to avoid vendor lock-in.

Detecting and syncing files instantly is a must to ensure CDN usage is as high
as possible. If new files would only be detected every 10 minutes, then visitors
may be downloading files directly from the web server instead of from the CDN.
This increases the load on the web server unnecessarily and also increases the
page load time for the visitors.
For example, one visitor has uploaded images as part of the content he cre-
ated. All visitors will be downloading the image from the web server, which
is suboptimal, considering that they could have been downloading it from the
CDN.

The ability to mix CDNs and static file servers makes it possible to either
maximize the page loading performance or minimize the costs. Depending on
your company’s customer base, you may either want to pay for a global CDN or
a local one. If you are a global company, a global CDN makes sense. But if you
are present only in a couple of countries, say the U.S.A., Japan and France, it
does not make sense to pay for a global CDN. It is probably cheaper to pay for
a North-American CDN and a couple of strategically placed static file servers
in Japan and France to cover the rest of your customer base. Without this
daemon, this is rather hard to set up. With it however, it becomes child’s play:
all you have to do, is configure multiple destinations. That is all there is to it.

36

It is then still up to you how you use these files, though. To decide from which
server you will let your visitors download the files, you could look at the IP, or
if your visitors must register, at the country they have entered in their profile.
This also allows for event-driven server allocation. For example if a big event
is being hosted in Paris, you could temporarily hire another server in Paris to
ensure low latency and high throughput.

Other use cases

The daemon, or at least one or more of the modules that were written for it,
can be reused in other applications. For example:

• Back-up tool

• Video transcoding server (e.g. to transcode videos uploaded by visitors to
H.264 or Flash video)

• Key component in creating your own CDN

• Key component in a file synchronization tool for consumers

9.2 Configuration file design

Since the configuration file is the interface and I had a good idea of the features
I wanted to support, I started by writing a configuration file. That might be
unorthodox, but in the end, this is the most important part of the daemon. If
it is too hard to configure, nobody will use it. If it is easy to use, more people
will be inclined to give it a try.

Judge for yourself how easy it is by looking at listing 3. Beneath the config root
node, there are 3 child nodes, one for each of the 3 major sections:

1. sources: indicate each data source in which new, modified and deleted
files will be detected recursively. Each source has a name (that we will
reference later in the configuration file) and of course a scanPath, which
defines the root directory within which new/modified/deleted files will be
detected. It can also optionally have the documentRoot and basePath at-
tributes, which may be necessary for some processors that perform magic
with URLs. sources itself also has an optional ignoredDirs attribute,
which will subsequently be applied to all filter nodes. While unnec-
essary, this prevents needless duplication of ignoredDirs nodes inside
filter nodes.

2. servers: provide the settings for all servers that will be used in this
configuration. Each server has a name and a transporter that it should
use. The child nodes of the server node are the settings that are passed
to that transporter.

37

3. rules: this is the heart of the configuration file, since this is what de-
termines what goes where. Each rule is associated with a source (via the
for attribute), must have a label attribute and can consist (but does not
have to!) of three parts:

(a) filter: can contain paths, extensions, ignoredDirs, pattern and
size child nodes. The text values of these nodes will be used to
filter the files that have been created, modified or deleted within the
source to which this rule applies. If it is a match, then the rule will be
applied (and therefor the processor chain and destination associated
with it). Otherwise, this rule is ignored for that file. See the filter
module (section 9.3.1) explanation for details.

(b) processorChain: accepts any number of processor nodes through
which you reference (via the name attribute) the processor module
and the specific processor class within that processor module that
you would like to use. They will be chained in the order you specify
here.

(c) destinations: accepts any number of destination nodes through
which you specify all servers to which the file should be transported.
Each destination node must have a server attribute and can have
a path attribute. The path attribute sets a parent path (on the
server) inside which the files will be transported.

Reading the above should make less sense than simply reading the configuration
file. If that is the case for you too, then I succeeded.

9.3 Python modules

All modules have been written with reusability in mind: none of them make
assumptions about the daemon itself and are therefor reusable in other Python
applications.

9.3.1 filter.py

This module provides the Filter class. Through this class, you can check if
a given file path matches a set of conditions. This class is used to determine
which processors should be applied to a given file and to which CDN it should
be synced.

This class has just 2 methods: set conditions() and matches(). There are 5
different conditions you can set. The last two should be used with care, because
they are a lot slower than the first three. Especially the last one can be very
slow, because it must access the file system.
If there are several valid options within a single condition, a match with any of
them is sufficient (OR). Finally, all conditions must be satisfied (AND) before

38

Listing 3: Sample configuration file.
<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<con f ig >

<!−− Sources −−>
<source s i gnoredDi r s=”CVS : . svn”>

<source name=”drupal ” scanPath=”/htdocs / drupal ” documentRoot=/htdocs basePath=/drupal / />
<source name=”downloads” scanPath=”/Users /wimleers /Downloads” />

</sources>

<!−− Serve r s −−>
<s e rve r s >

<s e r v e r name=”o r i g i n pu l l cdn” t r an spo r t e r=”syml ink or copy”>
<l o ca t i on >/htdocs / drupal / s t a t i c f i l e s </lo ca t i on >
<ur l>http ://mydomain . mycdn . com/ s t a t i c f i l e s </ur l>

</server >
<s e r v e r name=”f tp push cdn” t r an spo r t e r=”f tp ” maxConnections=”5”>

<host>l o c a l ho s t </host>
<username>daemontest</username>
<password>daemontest</password>
<ur l>http :// l o c a l h o s t /daemontest/</ur l>

</server >
</se rve r s >

<!−− Rules −−>
<ru l e s >

<r u l e f o r=”drupal ” l a b e l=”CSS , JS , images and Flash”>
< f i l t e r >

<paths>modules : misc</paths>
<extens ions >i c o : j s : c s s : g i f : png : jpg : jpeg : svg : swf</extens ions >

</ f i l t e r >
<processorChain>

<proc e s s o r name=”image opt imizer . KeepFilename” />
<proc e s s o r name=”yui compressor . YUICompressor” />
<proc e s s o r name=l ink upda t e r . CSSURLUpdater />
<proc e s s o r name=”un ique f i l ename . Mtime” />

</processorChain>
<de s t i na t i on s >

<de s t i n a t i on s e r v e r=”o r i g i n pu l l cdn” />
<de s t i n a t i on s e r v e r=”f tp push cdn” path=” s t a t i c ” />

</de s t i na t i on s >
</ru le>

<r u l e f o r=”drupal ” l a b e l=”Videos”>
< f i l t e r >

<paths>modules : misc</paths>
<extens ions >f l v :mov : av i :wmv</extens ions >
<i gnoredDirs>CVS : . svn</ignoredDirs>
<s i z e condit ionType=”minimum”>1000000</ s i z e >

</ f i l t e r >
<processorChain>

<proc e s s o r name=”un ique f i l ename .MD5” />
</processorChain>
<de s t i na t i on s >

<de s t i n a t i on s e r v e r=”f tp push cdn” path=”v ideos ” />
</de s t i na t i on s >

</ru le>

<r u l e f o r=”downloads” l a b e l=”Mirror”>
< f i l t e r >

<extens ions >mov : avi </extens ions >
</ f i l t e r >
<de s t i na t i on s >

<de s t i n a t i on s e r v e r=”o r i g i n pu l l cdn” path=”mirror ” />
<de s t i n a t i on s e r v e r=”f tp push cdn” path=”mirror ” />

</de s t i na t i on s >
</ru le>

</ru l e s >
</con f ig >

39

a given file path will result in a positive match.
The five conditions that can be set (as soon as one or more conditions are set,
Filter will work) are:

1. paths: a list of paths (separated by colons) in which the file can reside

2. extensions: a list of extensions (separated by colons) the file can have

3. ignoredDirs: a list of directories (separated by colons) that should be
ignored, meaning that if the file is inside one of those directories, Filter
will mark this as a negative match – this is useful to ignore data in typical
CVS and .svn directories

4. pattern: a regular expression the file path must match

5. size

(a) conditionType: either minimum or maximum

(b) threshold: the threshold in bytes

This module is fully unit-tested and is therefor guaranteed to work flawlessly.

9.3.2 pathscanner.py

As is to be expected, this module provides the PathScanner class, which scans
paths and stores them in a SQLite [68] database. You can use PathScanner to
detect changes in a directory structure. For efficiency, only creations, deletions
and modifications are detected, not moves. This class is used to scan the file
system for changes when no supported filesystem monitor is installed on the
current operating system. It is also used for persistent storage: when the daemon
has been stopped, the database built and maintained through/by this class is
used as a reference, to detect changes that have happened before it was started
again. This mean PathScanner is used during the initialization of the daemon,
regardless of the available file system monitors.

The database schema is very simple: (path, filename, mtime). Directories are
also stored; in that case, path is the path of the parent directory, filename
is the directory name and mtime is set to -1. Modified files are detected by
comparing the current mtime with the value stored in the mtime column.

Changes to the database are committed in batches, because changes in the
filesystem typically occur in batches as well. Changes are committed to the
database on a per-directory level. However, if many changes occurred in a single
directory and if every change would be committed separately, the concurrency
level would rise unnecessarily. By default, every batch of 50 changes inside a
directory is committed.

This class provides you with 8 methods:

40

• initial scan() to build the initial database – works recursively

• scan() to get the changes – does not work recursively

• scan tree() (uses scan()) to get the changes in an entire directory struc-
ture – obviously works recursively

• purge path() to purge all the metadata for a path from the database

• add files(), update files(), remove files() to add/update/remove
files manually (useful when your application has more/faster knowledge
of changes)

Special care had to be taken to not scan directory trees below directories that
are in fact symbolic links. This design decision was made to mimic the behavior
of file system monitors, which are incapable of following symbolic links.

This module does not have any tests yet, because it requires a lot of mock
functions to simulate system calls. It has been tested manually thoroughly
though.

9.3.3 fsmonitor.py

This time around, there is more to it than it seems. fsmonitor.py provides
FSMonitor, a base class from which subclasses derive. fsmonitor inotify.py
has the FSMonitorInotify class, fsmonitor fsevents.py has FSMonitorFSEvents
and fsmonitor polling.py has FSMonitorPolling.
Put these together and you have a single, easy to use abstraction for each major
operating system’s file system monitor:

• Uses inotify [62] on Linux (kernel 2.6.13 and higher)

• Uses FSEvents [64, 65] on Mac OS X (10.5 and higher)

• Falls back to polling when neither one is present

Windows support is possible, but has not been implemented yet due to time
constraints. There are two APIs to choose between: FindFirstChangeNotifi-
cation and ReadDirectoryChanges. There is a third, the FileSystemWatcher
class, but this is only usable from within .NET and Visual C++, so it is an
unlikely option because it is not directly accessible from within Python. This
was already mentioned in 9.1.

The ReadDirectoryChanges API is more similar to inotify in that it triggers
events on the file level. The disadvantage is that this is a blocking API. Find-
FirstChangeNotification is a non-blocking API, but is more similar to FSEvents,
in that it triggers events on the directory level. A comprehensive, yet concise
comparison is available at [66].

41

Implementation obstacles

To make this class work consistently, less critical features that are only avail-
able for specific file system monitors are abstracted away. And other features
are emulated. It comes down to the fact that FSMonitor’s API is very sim-
ple to use and only supports 5 different events: CREATED, MODIFIED, DELETED,
MONITORED DIR MOVED and DROPPED EVENTS. The last 2 events are only triggered
for inotify and FSEvents.
A persistent mode is also supported, in which all metadata is stored in a
database. This allows you to even track changes when your program was not
running.

As you can see, only 3 “real” events of interest are supported: the most common
ones. This is because not every API supports all features of the other APIs.
inotify is the most complete in this regard: it supports a boatload of different
events, on a file-level. But it only provides realtime events: it does not maintain
a complete history of events. And that is understandable: it is impossible to
maintain a history of every file system event. Over time, there would not be
any space left to store actual data.
FSEvents on the other hand, works on the directory-level, so you have to main-
tain your own directory tree state to detect created, modified and deleted files.
It only triggers a “a change has occurred in this directory” event. This is why
for example there is no “file moved” event: it would be too resource-intensive
to detect, or at the very least it would not scale. On the plus side, FSEvents
maintains a complete history of events. PathScanner’s scan() method is used
to detect the changes to the files in each directory that was changed.

Implementations that do not support file-level events (FSEvents and polling)
are persistent by design. Because the directory tree state must be maintained
to be able to trigger the correct events, PathScanner (see section 9.3.2) is used
for storage. They use PathScanner’s (add|update|remove) files() functions
to keep the database up-to-date. And because the entire directory tree state is
always stored, you can compare the current directory tree state with the stored
one to detect changes, either as they occur (by being notified of changes on
the directory level) or as they have occurred (by scanning the directory tree
manually).

For the persistent mode, we could take advantage of FSEvents’ ability to look
back in time. However, again due to time constraints, the same approach is used
for every implementation: a manual scanning procedure – using PathScanner –
is started after the file system monitor starts listening for new events on a given
path. That way, no new events are missed. This works equally well as using
FSEvents’ special support for this; it is just slower. But it is sufficient for now.
This was not implemented due to time constraints.
To implement this, one would simply need to get the highest mtime (modification
time of a file) stored in the database, and then ask FSEvents to send the events
from that starting time to our callback function, instead of starting from the
current time.

42

9.3.4 persistent queue.py and persistent list.py

In order to provide data persistency , I wrote a PersistentQueue class and
a PersistentList class. As their names indicate, these provide you with a
persistent queue and a persistent list. They use again an SQLite database for
persistent storage. For each instance you create, you must choose the table name
and you can optionally choose which database file to write to. This allows you
to group persistent data structures in a logical manner (i.e. related persistent
data structures can be stored in the same database file, thereby also making it
portable and easy to backup).

To prevent excessive file system access due to an overreliance on SQLite, I also
added in-memory caching. To ensure low resource consumption, only the first
X items in PersistentQueue are cached in-memory (a minimum and maximum
threshold can be configured), but for PersistentList there is no such restric-
tion: it is cached in-memory in its entirety. It is not designed for large datasets,
but PersistentQeueue is.

PersistentQueue is used to store the events that have been triggered by changes
in the file system via fsmonitory.py: (input file, event) pairs are stored
in a persistent queue. Because the backlog (especially the one after the initial
scan) can become very large (imagine 1 million files needing to be synced), this
was a necessity.
PersistentList is used to store the files that are currently being processed and
the list of files that have failed to sync. These must also be stored persistently,
because if the daemon is interrupted while still syncing files, these lists will not
be empty, and data could be lost. Because they are persistent, the daemon can
add the files in these lists to the queue of files to be synced again, and the files
will be synced, as if the daemon was never interrupted.

The first question to arise is: “Why use SQLite in favor of Python’s built-in
shelve module [72]?” Well, the answer is simple: aside from the benefit of
the ability to have all persistent data in a single file, it must also scale to tens
of thousands or even millions of files. shelve is not scalable because its data
is loaded into memory in its entirety. This could easily result in hundreds of
megabytes of memory usage. Such excessive memory usage should be avoided
at all costs when the target environment is a (web) server.

Your next question would probably be: “How can you be sure the SQLite
database will not get corrupt?” The answer is: we can not. But the same
applies to Python’s shelve module. However, the aforementioned advantages
of SQLite give plenty of reasons to choose SQLite over shelve. Plus, SQLite
is thoroughly tested, even against corruption [69]. It is also used for very
large datasets (it works well for multi-gigabyte databases but is not designed
for terabyte-scale databases [70]) and by countless companies, amongst which
Adobe, Apple, Google, Microsoft and Sun [71]. So it is the best bet you can
make.

Finally, you would probably ask “Why not use MySQL or PostgreSQL or . . . ?”.
Again the answer is brief: because SQLite requires no additional setup since it
is serverless, as opposed to MySQL and PostgreSQL.

43

Both modules are fully unit-tested and are therefor guaranteed to work flaw-
lessly.

9.3.5 Processors

processor.py

This module provides several classes: Processor, ProcessorChain and ProcessorChainFactory.

Processor is a base class for processors, which are designed to be easy to write
yourself. Processors receive an input file, do something with it and return the
output file. The Processor class takes a lot of the small annoying tasks on its
shoulders, such as checking if the file is actually a file this processor can process,
calculating the default output file, checking if the processor (and therefor the
entire chain of processors) should be run per server or not and a simple abstrac-
tion around an otherwise multi-line construction to run a command.
Upon completion, a callback will be called. Another callback is called in case of
an error.
An example can found in listing 4. For details, please consult the daemon’s
documentation.

Processors are allowed to make any change they want to the file’s contents and
are executed before a file is synced, most often to reduce the size of the file and
thereby to decrease the page loading time.
They are also allowed to change the base name of the input file, but they are
not allowed to change its path. This measure was taken to reduce the amount
of data that needs to be stored to know which file is stored where exactly in the
database of synced files (see later: section 9.4). This is enforced by convention,
because in Python it is impossible to truly enforce anything. If you do change
the path, the file will sync just fine, but it will be impossible to delete the old
version of a modified file, unless it results in the exact same path and base name
each time it runs through the processor chain.

The Processor class accepts a parent logger which subclasses can optionally
use to perform logging.

Then there is the ProcessorChain class, which receives a list of processors
and then runs them as a chain: the output file of processor one is the input
file of processor two, and so on. ProcessorChains run in their own threads.
ProcessorChain also supports logging and accepts a parent logger.

There are two special exceptions Processor subclasses can throw:

1. RequestToRequeueException: when raised, the ProcessorChain will stop
processing this file and will pretend the processing failed. This effectively
means that the file will be reprocessed later. A sample use case is the
CSSURLUpdater class (described later on in this section), in which the

44

Listing 4: YUICompressor Processor class.
c l a s s YUICompressor (Proces sor) :

””” compresses . c s s and . j s f i l e s with YUI Compressor ”””

v a l i d e x t e n s i o n s = (” . c s s ” , ” . j s ”)

de f run (s e l f) :
We do not rename the f i l e , so we can use the d e f au l t output f i l e .

Remove the output f i l e i f i t a l r eady ex i s t s , o therwi se YUI
Compressor w i l l f a i l .
i f os . path . e x i s t s (s e l f . o u t p u t f i l e) :

os . remove (s e l f . o u t p u t f i l e)

Run YUI Compressor on the f i l e .
yu icompressor path = os . path . j o i n (s e l f . p roce s so r s path , ” yuicompressor . j a r ”)
args = (yuicompressor path , s e l f . i n p u t f i l e , s e l f . o u t p u t f i l e)
(stdout , s t d e r r) = s e l f . run command (” java −j a r %s %s −o %s” % args)

Raise an except ion i f an e r r o r occurred .
i f not s t d e r r == ”” :

r a i s e Proces so rError (s t d e r r)

re turn s e l f . o u t p u t f i l e

URLs of a CSS file must be updated to point to the corresponding URLs
of the files on the CDN. But if not all of these files have been synced
already, that is impossible. So it must be retried later.

2. DocumentRootAndBasePathRequiredException: when raised, the ProcessorChain
will stop applying the processor that raised this exception to this file, be-
cause the source to which this file belongs, did not have these attributes
set and therefor it cannot be applied.

Finally, ProcessorChainFactory: this is simply a factory that generates ProcessorChain
objects, with some parameters already filled out.

filename.py

This processor module provides two processor classes: SpacesToUnderscores
and SpacesToDashes. They respectively replace spaces with underscores and
spaces with dashes in the base name of the file.

This one is not very useful, but it is a good simple example.

unique filename.py

Also in this processor module, two processor classes are provided: Mtime and
MD5. MTime appends the mtime (last modification time) as a UNIX time stamp
to the file’s base name (preceded by an underscore). MD5 does the same, but
instead of the mtime, it appends the MD5 hash of the file to the file’s base name.

45

This processor is useful if you want to ensure that files have unique filenames,
so that they can be given far future Expires headers (see section 7).

image optimizer.py

This processor module is inspired by [74]. It optimizes images losslessly, i.e. it
reduces the filesize without touching the quality. The research necessary was
not performed by me, but by Stoyan Stefanov, a Yahoo! web developer working
for the Exceptional Performance team, and was thoroughly laid out in a series
of blog posts [75, 76, 77, 78] at the Yahoo! user interface blog.

For GIF files, a conversion to PNG8 is performed using ImageMagick’s [79]
convert. PNG8 offers lossless image quality, as does GIF, but results in a
smaller file size. PNG8 is also supported in all browsers, including IE6. The
alpha channels of true color PNG (PNG24 & PNG32) are not supported in IE6.

PNG files are stored in so-called “chunks” and not all of these are required to
display the image – in fact, most of them are not used at all. pngcrush [80] is
used to strip all the unneeded chunks. pngcrush is also applied to the PNG8
files that are generated by the previous step. I decided not to use the brute
force method, which tries over a hundred different methods for optimization,
but just the 10 most common ones. The brute force method would result in 30
seconds of processing versus less than a second otherwise.

JPEG files can be optimized in three complementary ways: stripping metadata,
optimizing the Huffman tables and making them progressive. There are two
variations to store a JPEG file: baseline and progressive. A baseline JPEG file
is stored as one top-to-bottom scan, whereas a progressive JPEG file is stored as
a series of scans, with each scan gradually improving the quality of the overall
image. Stoyan Stefanov’s tests [78] have pointed out that there is a 75% chance
that the JPEG file is best saved as baseline when it is smaller than 10 KB.
For JPEG files larger than 10 KB, it is 94% likely that progressive JPEG will
result in a better compression ratio. That is why the third optimization (making
JPEG files progressive) is only applied when the file is larger than 10 KB. All
these optimizations are applied using jpegtran [81].

Finally, animated GIF files can be optimized by stripping the pixels from each
frame that do not change from the previous to the next frame. I use gifsicle [82]
to achieve that.

There is one important nuance though: stripping metadata may also remove
the copyright information, which may have legal consequences. So it is not
recommended to strip metadata when some of the photos being hosted have
been bought, which may be the situation for a newspaper web site, for example.

Now that you know how the optimizations are done, here is the overview of all
processor classes that this processor module provides:

1. Max optimizes image files losslessly (GIF, PNG, JPEG, animated GIF)

46

2. KeepMetadata same as Max, but keeps JPEG metadata

3. KeepFilename same as Max, but keeps the original filename (no GIF op-
timization)

4. KeepMetadataAndFilename same as Max, but keeps JPEG metadata and
the original filename (no GIF optimization)

link updater.py

Thanks to this processor module, it is possible to serve CSS files from a CDN
while updating the URLs in the CSS file to reference the new URLs of these
files, that is, the URLs of the synced files. It provides a sole processor class:
CSSURLUpdater. This processor class should only be used when either of these
conditions are true:

• The base path of the URLs changes and the CSS file uses relative URLs
that are relative to the document root to reference images (or other me-
dia).
For example:

– http://example.com/static/css/style.css
becomes

– http://cdn.com/example.com/static/css/style.css
and its referenced file

– http://example.com/static/images/background.png
becomes

– http://cdn.com/example.com/static/images/background.png
after syncing. If the style.css file on the original server references
background.png through the relative URL /static/images/background.png,
then the CSSURLUpdater processor must be used to update the URL. Oth-
erwise this relative URL would become invalid, since the correct relative
URL for the CSS file on the CDN to reference has changed (because the
base path has changed).

• The base names of the referenced files changes.
For example:

– http://example.com/static/css/style.css
becomes

– http://cdn.com/example.com/static/css/style 1242440815.css
and its referenced file

– http://example.com/static/images/background.png
becomes

– http://cdn.com/static/images/background 1242440827.png
after syncing. Then it must always use CSSURLUpdater. Otherwise the
URL would become invalid, as the file’s base name has changed.

CSSURLUpdater uses the cssutils [83] Python module to parse CSS files. This
unfortunately also negatively impacts its performance, because it validates the

47

CSS file while tokenizing it. But as this will become open source, others will
surely improve this. A possibility is to use regular expressions instead to filter
out the URLs.

The CSSURLUpdater processor requires to be run per-server (and therefor the
entire processor chain which it is part of), because it wants the referenced files
(typically images, but possibly also fonts) to be on the same server.
All it does is resolving relative URLs (relative to the CSS file or relative to
the document root) to absolute paths on the file system, then looking up the
corresponding URLs on the CDN and placing those instead in the CSS file. If
one of the referenced files cannot be found on the file system, this URL remains
unchanged. If one of the referenced files has not yet been synced to the CDN,
then a RequestToRequeueException exception will be raised (see section 9.3.5)
so that another attempt will be made later, when hopefully all referenced files
have been synced.
For details, see the daemon’s documentation.

yui compressor.py

This is the processor module that could be seen in listing 4. It accepts CSS and
JS files and runs the YUI Compressor [84] on them, which are then compressed
by stripping out all whitespace and comments. For JavaScript, it relies on
Rhino [85] to tokenize the JavaScript source, so it is very safe: it will not strip
out whitespace where that could potentially cause problems. Thanks to this, it
can also optimize more aggressively: it saves over 20% more than JSMIN [86].
For CSS (which is supported since version 2.0) it uses a regular-expression based
CSS minifier.

9.3.6 Transporters

transporter.py

Each transporter is a persistent connection to a server via a certain protocol
(FTP, SCP, SSH, or custom protocols such as Amazon S3, any protocol really)
that is running in its own thread. It allows you to queue files to be synced (save
or delete) to the server.
Transporter is a base class for transporters, which are in turn very (very!)
thin wrappers around custom Django storage systems [88]. If you need sup-
port for another storage system, you should write a custom Django storage
system first. Transporters’ settings are automatically validated in the construc-
tor. Also in the constructor, an attempt is made to set up a connection to their
target server. When that fails, an exception (ConnectionError) is raised. Files
can be queued for synchronization through the sync file(src, dst, action,
callback, error callback) method.
Upon completion, the callback function will be called. The error callback
function is called in case of an error.

48

Listing 5: TransporterFTP Transporter class.
c l a s s TransporterFTP (Transporter) :

name = ’FTP’
v a l i d s e t t i n g s = ImmutableSet ([” host ” , ”username ” , ”password ” , ” u r l ” , ” port ” , ”path ”])
r e q u i r e d s e t t i n g s = ImmutableSet ([” host ” , ”username ” , ”password ” , ” u r l ”])

de f i n i t (s e l f , s e t t i n g s , ca l lback , e r r o r c a l l b a c k , pa r en t l o gg e r=None) :
Transporter . i n i t (s e l f , s e t t i n g s , ca l lback , e r r o r c a l l b a c k , pa r en t l o gg e r)

F i l l out d e f a u l t s i f nece s sa ry .
c o n f i g u r e d s e t t i n g s = Set (s e l f . s e t t i n g s . keys ())
i f not ” port ” in c o n f i g u r e d s e t t i n g s :

s e l f . s e t t i n g s [” port ”] = 21
i f not ”path” in c o n f i g u r e d s e t t i n g s :

s e l f . s e t t i n g s [” path ”] = ””

Map the s e t t i n g s to the format expected by FTPStorage .
l o c a t i o n = ” f tp ://” + s e l f . s e t t i n g s [” username ”] + ” :”
l o c a t i o n += s e l f . s e t t i n g s [” password ”] + ”@” + s e l f . s e t t i n g s [” host ”]
l o c a t i o n += ”:” + s t r (s e l f . s e t t i n g s [” port ”]) + s e l f . s e t t i n g s [” path ”]
s e l f . s t o rage = FTPStorage (l o ca t i on , s e l f . s e t t i n g s [” u r l ”])
t ry :

s e l f . s t o rage . s t a r t c onn e c t i o n ()
except Exception , e :

r a i s e ConnectionError (e)

Transporter also supports logging and accepts a parent logger.
A sample transporter can be found in listing 5. For details, please consult the
daemon’s documentation.

Django is a high-level Python Web framework that encourages rapid develop-
ment and clean, pragmatic design. It is growing very strong in popularity. It
is very different from Drupal, which aims to be both a CMS (install it and you
have a working web site) and a framework. Django just aims to be a framework.
It has APIs for many things, ranging from caching, database abstraction, forms
to sessions, syndication, authentication and of course storage systems. I have
extract that single API (and its dependencies) from Django and am reusing it.

Now, why the dependency on Django’s Storage class? For three reasons:

1. Since Django is a well-known, widely used open source project with many
developers and is powering many web sites, it is fair to assume that the
API is stable and solid. Reinventing the wheel is meaningless and will just
introduce more bugs.

2. Because the daemon relies on (unmodified!) Django code, it can benefit
from bugfixes/features applied to Django’s code and can use custom stor-
age systems written for Django. The opposite is also true: changes made
by contributors to the daemon (and initially myself) can be contributed
back to Django and its contributed custom storage systems.

3. django-storages [89] is a collection of custom storage systems, which
includes these classes:

(a) DatabaseStorage: store files in the database (any database that
Django supports (MySQL, PostgreSQL, SQLite and Oracle)

49

(b) MogileFSStorage; MogileFS [100] is an open source distributed file
system

(c) CouchDBStorage; Apache CouchDB [101] is a distributed, fault-tolerant
and schema-free document-oriented database accessible via a REST-
ful HTTP/JSON API

(d) CloudFilesStorage; Mosso/Rackspace Cloud Files [90], an alterna-
tive to Amazon S3

(e) S3Storage; uses the official Amazon S3 Python module

(f) S3BotoStorage; uses the boto [99] module to access Amazon S3 [97]
and Amazon CloudFront [98]

(g) FTPStorage; uses the ftplib Python module [96]

For the last two, transporters are available. The first three are not so widely
used and thus not yet implemented, although it would be very easy to support
them, exactly because all that is necessary, is to write thin wrappers. For the
third, a transporter was planned, but scrapped due to time constraints. The
fourth is not very meaningful to use, since the fifth is better (better maintained
and higher performance).
The CouchDBStorage custom storage class was added about a month after I se-
lected django-storages as the package I would use, indicating that the project
is alive and well and thus a good choice.
The CloudFilesStorage custom storage class is part of django-storages
thanks to my mediations. An early tester of the daemon requested [91] sup-
port for Cloud Files and interestingly enough, one day before, somebody had
published a Python package (django-cumulus [92]) that did just that. Within
a week, a dependency on django-storages was added from django-cumulus and
django-storages had Cloud Files support. This is further confirmation that
I had made a good choice: it suggests that my choice for django-storages is
beneficial for both projects.

So I clearly managed to make a big shortcut (although it had to be made
working outside of Django itself) to achieve my goal: supporting CDNs that
rely on FTP or origin pulling (see section 5), as well as the Amazon S3 and
Amazon CloudFront CDNs.

However, supporting origin pull was trickier than would seem at first. Normally,
you just rewrite your URLs and be done with it. However, I wanted to support
processing files prior to syncing them to the CDN. And I want to keep following
the “do not touch the original file” rule. With push, that is no problem, you
just process the file, store the output file in a temporary directory, push the file
and delete it afterwards. But what about pull?
I had to be creative here. Since files must remain available for origin pull (in case
the CDN wants/needs to update its copy), all files must be copied to another
publicly accessible path in the web site. But what about files that are not
modified? Or have just changed filenames (for unique URLs)? Copying these
means storing the exact same data twice. The answer is fortunately very simple:
symbolic links. Although available only on UNIX, it is very much worth it: it
reduces redundant data storage significantly. This was then implemented in

50

a new custom storage system: SymlinkOrCopyStorage, which copies modified
files and symlinks unmodified ones.

In total, I have contributed three patches to django-storages:

1. FTPStorage: saving large files + more robust exists()[93]

(a) It enables the saving of large files by no longer reading all the chunks
of the file in a single string. Instead it uses ftplib.storbinary()
directly with a file pointer, which then handles the writing in chunks
automatically.

(b) It makes exists() more reliable: it has been tested with two different
FTP servers and so far it works without problems with the following
FTP servers, whereas it did not work with any of them before:

i. Xlight FTP Server 3.2 (used by SimpleCDN)
ii. Pure-FTPd (used by Rambla)

This improves the number of use cases where you can use the FTPStorage
custom storage system.

2. S3BotoStorage: set Content-Type header, fixed the setting of permis-
sions, use HTTP and disable query authentication by default [94]

(a) The Content-Type header is set automatically via guessing based
on the extension. This is done through mimetypes.guesstype. Right
now, no Content-Type is set, and therefor the default binary mime-
type is set: application/octet- stream. This causes browsers to down-
load files instead of displaying them.

(b) The ACL (i.e. file permissions) now actually gets applied properly
to the bucket and to each file that is saved to the bucket.

(c) Currently, URLs are generated with query-based authentication (which
implies ridiculously long URLs will be generated) and HTTPS is used
instead of HTTP, thereby preventing browsers from caching files. I
have disabled query authentication and HTTPS, as this is the most
common use case for serving files. This probably should be config-
urable, but that can be done in a revised patch or a follow-up patch.

(d) It allows you to set custom headers through the constructor (which
I really needed for my daemon).

This greatly improves the usability of the S3BotoStorage custom storage
system in its most common use case: as a CDN for publicly accessible
files.

3. SymlinkOrCopyStorage: new custom storage system [95]

The maintainer was very receptive to these patches and replied a mere 23 min-
utes after I contacted him (via Twitter):

51

davidbgk@wimleers Impressive patches, I will merge your work ASAP.
Thanks for contributing! Interesting bachelor thesis :)

The patches were submitted on May 14, 2009. The first and third patch were
committed on May 17, 2009. The second patch needs a bit more work (more
configurable, less hard coded, which it already was though).

transporter ftp.py

Provides the TransporterFTP class, which is a thin wrapper around FTPStorage,
with the aforementioned patch applied.

transporter s3.py

Provides the TransporterS3 class, which is a thin wrapper around S3BotoStorage,
with the aforementioned patch applied.

transporter cf.py

Provides the TransporterCF class, which is not a thin wrapper around S3BotoStorage,
but around TransporterS3. In fact, it just implementes the alter url()
method to alter the Amazon S3 URL to an Amazon CloudFront URL (see
section 5).

It also provides the create distribution() function to create a distribution
for a given origin domain (a domain for a specific Amazon S3 bucket). Please
consult the daemon’s documentation for details.

transporter symlink or copy.py

Provides the TransporterSymlinkOrCopy class, which is a thin wrapper around
SymlinkOrCopyStorage, which is a new custom storage system I contributed
to django-storages, as mentioned before.

9.3.7 config.py

This module contains just one class: Config. Config can load a configuration
file (parse the XML) and validate it. Validation does not happen through an
XML schema, but through “manual” validation. The filter node is validated
through the Filter class to ensure it is error free (a Filter object is created
and the conditions from the filter node are set and when no exceptions are

52

raised, the conditions are valid). All references (to sources and servers) are also
validated. Its validation routines are pretty thorough, but by no means perfect.
Config also supports logging and accepts a parent logger.

This module should be unit tested, but is not – yet.

9.3.8 daemon thread runner.py

I needed to be able to run the application as a daemon. Great, but then how
do you stop it? Through signals. That is also how for example the Apache
HTTP server does it [102]. To send a signal, you need to know the process’ pid
(process id). So the pid must be stored in a file somewhere.

This module contains the DaemonThreadRunner class, which accepts an object
and the name of the file that should contain the pid. The object should be
a subclass of Python’s threading.Thread class. As soon as you start() the
DaemonThreadRunner object, the pid will be written to the specified pid file
name, the object will be marked as a daemon thread and started. While it is
running, the pid is written to the pid file every sixty seconds, in case the file is
deleted accidentally.

When an interrupt is caught (SIGINT for interruption, SIGTSTP for suspension
and SIGTERM for termination), the thread (of the object that was passed) is
stopped and DaemonThreadRunner waits for the thread to join and then deletes
the file.

This module is not unit tested, because it makes very little sense to do so (there
is not much code). Having used it hundreds of times, it did not fail once, so it
is reliable enough.

9.4 Putting it all together: arbitrator.py

9.4.1 The big picture

The arbitrator is what links together all Python modules I have described in
the previous section. Here is a hierarchical overview, so you get a better under-
standing of the big picture:

53

Figure 18: The big picture

Clearly, Arbitrator is what links everything together: it controls the 5 com-
ponents: Config, FSMonitor, Filter, Processor and Transporter. There
are three subclasses of FSMonitor to take advantage of the platform’s built-
in file system monitor. Processor must be subclassed for every processor.
Transporter must be subclassed for each protocol.

Now that you have an insight in the big picture, let us examine how exactly
Arbitrator controls all components, and what happens before the main func-
tion.

9.4.2 The flow

First, an Arbitrator object is created and its constructor does the following:

54

• create a logger

• parse the configuration file

• verify the existence of all processors and transporters that are referenced
from the configuration file

• connect to each server (as defined in the configuration file) to ensure it is
working

Then, the Arbitrator object is passed to a DaemonThreadRunner object, which
then runs the arbitrator in such a way that it can be stopped through signals.
The arbitrator is then started. The following happens:

1. setup

(a) create transporter pools (analogous to worker thread pools) for each
server. These pools remain empty until transporters are necessary,
because transporters are created whenever they are deemed neces-
sary.

(b) collect all metadata for each rule

(c) initialize all data structures for the pipeline (queues, persistent queues
and persistent lists)

(d) move files from the ’files in pipeline’ persistent list to the ’pipeline’
persistent queue

(e) move files from the ’failed files’ persistent list to the ’pipeline’ per-
sistent queue

(f) create a database connection to the ’synced files’ database

(g) initialize the file system monitor (FSMonitor)

2. run

(a) start the file system monitor

(b) start the processing loop and keep it running until the thread is being
stopped

i. process the discover queue
ii. process the pipeline queue
iii. process the filter queue
iv. process the process queue
v. process the transport queues (1 per server)

vi. process the db queue
vii. process the retry queue
viii. allow retry (move files from the ’failed files’ persistent list to the

’pipeline’ persistent queue)
ix. sleep 0.2 seconds

(c) stop the file system monitor

55

(d) process the discover queue once more to sync the final batch of files
to the persistent pipeline queue

(e) stop all transporters

(f) log some statistics

That is roughly the logic of the daemon. It should already make some sense,
but it is likely that it is not yet clear what all the queues are for. And how they
are being filled and emptied. So now it is time to learn about the daemon’s
pipeline.

9.4.3 Pipeline design pattern

This design pattern, which is also sometimes called “Filters and Pipes” [103,
104, 105, 106], is slightly under documented, but it is still a very useful design
pattern. Its premise is to deliver an architecture to divide a large processing task
into smaller, sequential steps (“Filters”) that can be performed independently
– and therefor in parallel – which are finally connected via Pipes. The output
of one step is the input of the next.

For all that follows in this subsection, you may want to look at figure 19 while
reading. Note that this figure does not contain every detail: it is intended to
help you gain some insight into how the daemon works, not how every detail is
implemented.

In my case, files are discovered and are then put into the pipeline queue. When
they actually move into the pipeline (at which point they are added to the
’files in pipeline’ persistent list), they start by going into the filter queue, after
being filtered they go into the process queue (possibly more than once), after
being processed to the transport queue (again possibly more than once), after
being transported to the db queue, after being stored in the database, they are
removed from the ’files in pipeline’ persistent list and we are done for this file.
Repeat for every discovered file. This is the core logic of the daemon.

So many queues are used because there are so many stages in the pipeline. There
is a queue for each stage in the pipeline, plus some additional ones because the
persistent data structures use the pysqlite module, which only allows you to
access the database from the same thread as the connection was created in.
Because I (have to) work with callbacks, the calling thread may be different
from the creating thread, and therefor there are several queues that exist solely
for exchanging data between threads.
There is one persistent queue and two persistent lists. The persistent queue is
the pipeline queue, which contains all files that are queued to be sent through
the pipeline. The first persistent list is ’files in pipeline’. It is used to ensure
files still get processed if the daemon was killed (or crashed) while they were in
the pipeline. The second persistent list is ’failed files’ and contains all files for
which either a processor in the processor chain or a transporter failed.

56

Figure 19: Flowchart of the daemon’s pipeline.

57

When the daemon is restarted, the contents of the ’files in pipeline’ and ’failed
files’ lists are pushed into the pipeline queue, after which they are erased.

Queues are either filled through the Arbitrator (because it moves data from
one queue to the next):

• The pipeline queue is filled by the “process discover queue” method, which
always syncs all files in the discover queue to the pipeline queue.

• The filter queue is filled by the “process pipeline queue” method, which
processes up to 20 files (this is configurable) in one run, or until there are
100 files in the pipeline (this is also configurable), whichever limit is hit
first.

• The process queue is filled by the “process filter queue” method, which
processes up to 20 files in one run.

or through callbacks (in case data gets processed in a separate thread):

• The discover queue is filled through FSMonitor’s callback (which gets
called for every discovered file).

• The transport queue is filled through a ProcessorChain’s callback or di-
rectly from the “process filter queue” method (if the rule has no processor
chain associated with it). To know when a file has been synced to all its
destinations, the ’remaining transporters’ list gets a new key (the concate-
nation of the input file, the event and the string representation of the rule)
and the value of that key is a list of all servers to which this file will be
synced.

• The db queue is filled through a Transporter’s callback. Each time this
callback fires, it also carries information on which server the file has just
been transported to. This server is then removed from the ’remaining
transporters’ list for this file. When no servers are left in this list, the
sync is complete and the file can be removed from the ’files in pipeline’
persistent list.

Because the ProcessorChain and Transporter callbacks only carry information
about the file they have just been operating on, I had to find an elegant method
to transfer the additional metadata for this file, which is necessary to let the file
continue through the pipeline. I have found this in the form of currying [107].
Currying is dynamically creating a new function that calls another function,
but with some arguments already filled out. An example:

curried callback = curry(self . processor chain callback , event=event, rule=rule)

The function self.processor chain callback accepts the event and rule
arguments, but the ProcessorChain class has no way of accepting “additional
data” arguments. So instead of rewriting ProcessorChain (and the exact same

58

thing applies to Transporter), I simply create a curried callback, that will
automatically fill out the arguments that the ProcessorChain callback by itself
could never fill out.

Each of the “process X queue” methods acquires Arbitrator’s lock before
accessing any of the queues. Before a file is removed from the pipeline queue,
it is added to the ’files in pipeline’ persistent list (this is possible thanks to
PersistentQueue’s peek() method), and then it is removed from the pipeline
queue. This implies that at no time after the file has been added to the pipeline
queue, it can be lost. The worst case scenario is that the daemon crashes
between adding the file to the ’files in pipeline’ persistent list and removing it
from the pipeline queue. Then it will end up twice in the queue. But the second
sync will just overwrite the first one, so all that is lost, is CPU time.

The “allow retry” method allows failed files (in the ’failed files’ persistent list) to
be retried, by adding them back to the pipeline queue. This happens whenever
the pipeline queue is getting empty, or every 30 seconds. This ensures processors
that use the RequestToRequeueException exception can retry.

The only truly weak link is unavoidable: if the daemon crashes somewhere
between having performed the callback from FSMonitor, adding that file to the
discover queue and syncing the file from the discover queue to the pipeline queue
(which is necessary due to the thread locality restriction of pysqlite).

9.5 Performance tests

I have performed fairly extensive tests on both Mac OS X and Linux. The
application behaved identically on both platforms, despite the fact that different
file system monitors are being used in the background. The rest of this cross-
platform functioning without problems is thanks to Python.

All tests were performed on the local network, i.e. with a FTP server running on
the localhost. Very small scale tests have been performed with the Amazon S3
and CloudFront transporters, and since they worked, the results should apply
to those as well. It does not and should not matter which transporter is being
used.

At all times, the memory usage remained below 17 MB on Mac OS X and
below 7 MB on Linux (unless the update linker processor module was used, in
which case it leaks memory like a madman – the cssutils Python module is to
blame). A backlog of more than 10,000 files was no problem. Synchronizing 10
GB of files was no problem. I also tried a lot of variations in the configuration
and all of them worked (well, sometimes it needed some bug fixing of course).
Further testing should happen in real-world environments. Even tests in which
I forced processors or transporters to crash were completed successfully: no files
were lost and they would be synced again after restarting the daemon.

59

9.6 Possible further optimizations

• Files should be moved from the discover queue to the pipeline queue in
a separate thread, to minimize the risk of losing files due to a crashed
application before files are moved to the pipeline queue. In fact, the
discover queue could be eliminated altogether thanks to this.

• Track progress of transporters and allow them to be be stopped while still
syncing a file.

• Make processors more error resistent by allowing them to check the envi-
ronment, so they can ensure third party applications, such as YUI Com-
pressor or jpegtran are installed.

• Figure out an automated way of ensuring the correct operating of proces-
sors, since they are most likely the cause of problems thanks to the fact
that users can easily write their own Processors.

• Automatically copy the synced files DB every X seconds, to prevent long
delays for read-only clients. This will only matter on sites where uploads
happen more than once per second or so.

• Reorganize code: make a proper packaged structure.

• Make the code redistributable: as a Python egg, or maybe even as binaries
for each supported platform.

• Automatically stop transporters after a period of idle time.

9.7 Desired future features

• Polling the daemon for its current status (number of files in the queue,
files in the pipeline, processors running, transporters running, et cetera)

• Support for Munin/Nagios for monitoring (strongly related to the previous
feature)

• Ability to limit network usage by more than just the number of connec-
tions: also by throughput.

• Ability to limit CPU usage by more than just the number of simultaneous
processors.

• Store characteristics of the operations, such as TTS (Time-To-Sync), so
that you can analyze this data to configure the daemon to better suit your
needs.

• Cache the latest configuration file and compare with the new one. If
changes occurred to any of the rules, it should detect them on its own and
do the necessary resyncing.

60

10 Improving Drupal: CDN integration

It should be obvious by now that we still need a module to integrate Drupal
with a CDN, as Drupal does not provide such functionality on its own – if it did,
then this bachelor thesis would be titled differently. This is the end of the long
journey towards supporting the simplest and the most complex CDN or static
file server setups one can make. Fortunately, this is all fairly trivial, except for
maybe the necessary Drupal core patch.

10.1 Goals

The daemon I wrote is not necessary for Origin Pull CDNs. So this module
should support those through a simple UI. On the other hand, it must also be
easy to use the daemon for a Drupal web site. The former is called basic mode
and the latter is called advanced mode, thereby indicating that the latter is more
complex to set up (i.e. it requires you to set up the daemon).
Here are the goals again, this time in more detail:

• shared functionality

– ability to show per-page statistics: number of files on the page, num-
ber of files served from the CDN

– status report shows if CDN integration is active and displays as a
warning if it is disabled or in debug mode (to stress the importance
of having it enabled)

• basic mode

– enter the CDN URL and it will be used in file URLs automatically

– ability to only use the CDN for files with certain extensions

• advanced mode

– enter the absolute path to the synced files database and then file
URLs will be looked up from there automatically

– status report: check if daemon is running, if not, display the report
as an error

– status report: number of synced files, number of files in the pipeline,
number of files waiting to enter the pipeline

– per-page statistics: show from which destination the file is being
served

– per-page statistics: show the total and average time spent on query-
ing the synced files database

– ability to decide from which destination a file will be served (if multi-
ple destinations for a file are available) based on user properties (user
role, language, location) or whatever other property

61

10.2 Drupal core patch

I had the chance to speak to Andrew “drewish” Morton at DrupalCon DC
about the Drupal core patch that is necessary for the CDN integration module
for Drupal to become possible. He is the one who managed to get his pro-
posed Drupal File API patches committed to the current development version
of Drupal (which will become Drupal 7). So he definitely is the person to go
to for all things concerning files in Drupal right now. I explained to him the
need for a unified file URL generation/alteration mechanism and he immediately
understood and agreed.

Drupal already has one function to generate file URLs: file create url($path).
Unfortunately, this function is only designed to work for files that have been
uploaded by users or are generated by modules (e.g. transformations of images).
And now the bad news: there is no function through which the URLs for the
other files (the ones that are not uploaded but are shipped with Drupal core and
modules and themes) are generated. To be honest, the current method for gen-
erating these URLs is very ugly, although very simple: prepend the base path
to the relative file path. So if you want to serve the file misc/jquery.js (which
is part of Drupal core), then you would write the following code to generate an
URL for it:

$url = base path() . ’misc/jquery.js ’;

Andrew and I agreed that since eventually both kinds of files are typically served
from the same server(s), it only makes sense to generate their URLs through
one function. So the sensible thing to do was to also route the non-uploaded
files through the file create url() function to generate their URLs. And then
there would be a function that a module could implement, custom file url rewrite($path)
which would then allow file URLs to be altered.

So, I wrote a Drupal core patch exactly according to these specifications, and
it works great. However, we must fall back to the old mechanisms in case the
custom file url rewrite() function returns FALSE (meaning that the CDN
cannot or should not serve the file). But since there is a distinction between up-
loaded/generated files and shipping files, we must first determine which kind
of file it is. This can be done by looking at the path that was given to
file create url(): if it begins with the path of the directory that the Drupal
administrator chose to use for uploaded and generated files, then it is an upload-
ed/generated file. After this distinction has been made, the original procedures
are applied.

This patch was also ported to Drupal 7 (which will be the next version of Drupal)
and submitted for review. Unit tests were added (this is a requirement). The
reviews are very positive so far (with Dries Buytaert, the Drupal founder, simply
commenting “Awesome.” and adding it to his list of favorite patches) but it
was submitted too late to ensure it got committed before this thesis text had
to be finalized. However, the positivity of the reviews suggests that is is very
likely that the patch will get committed.

62

10.3 Implementation

• A simple configuration UI was created using the Forms API [57]. Ad-
vanced mode cannot be started if the daemon is not configured properly
yet (by ensuring the synced files database exists).

• The per-page statistics are rendered through Drupal’s hook exit(), which
is called just before the end of each page request. It is therefor able to
render after the rest of the page is rendered, which of course implies that
all file URLs have been created, so it is safe to calculate the statistics.

• A hook requirements() implementation was created, which allows me
to add information about the CDN integration module to Drupal’s status
report page.

• The aforementioned custom file url rewrite() function was implemented,
which rewrites the URL based on the mode. In basic mode, the CDN URL
is automatically inserted into file URLs and in advanced mode, the synced
files database is queried. This is an SQLite database, which the Drupal 6
database abstraction layer does not support. Drupal 7’s database abstrac-
tion layer does support SQLite, but is still in development (and will be
for at least 6 more months). Fortunately, there is also PDO [108], which
makes this sufficiently easy.

That is all there is to tell about this module. It is very simple: all complexity
is now embedded in the daemon, as it should be.

10.4 Comparison with the old CDN integration module

In January 2008, I wrote the initial version of the CDN integration module.
It was written for Drupal 5 instead of Drupal 6 though and was pure PHP
code, and thus limited by PHP’s constraints. It did not support Origin Pull
CDNs. Instead, it only supported push CDNs that were accessible over FTP.
The synchronization happened from within Drupal, on each cron run. Which
means it relied on manual file system scanning (i.e. polling) to detect changes
and was prevented by design to perform concurrent syncs, since PHP cannot do
that. To top it off, it did not store anything in the database, but in a serialized
array, which had to be unserialized on every page to retrieve the URLs. It
should be obvious that this was significantly slower and absolutely unscalable
and definitely unusable on any real web sites out there.

It had its algorithms right though. You could consider it a very faint preview
of what the end result looks like right now.

63

10.5 Screenshots

The configuration UI

Figure 20: CDN integration module settings form.

64

Figure 21: CDN integration module basic mode settings form.

Figure 22: CDN integration module advanced mode settings form.

65

Figure 23: CDN integration module other settings form.

The status report

Figure 24: Status report (basic mode, enabled).

66

Figure 25: Status report (basic mode, debug mode).

Figure 26: Status report (disabled).

67

Figure 27: Status report (advanced mode, enabled, daemon not running).

Figure 28: Status report (advanced mode, enabled, daemon running).

68

The per-page statistics

Figure 29: Per-page statistics.

69

11 Used technologies

• Languages

– PHP

– JavaScript

– Python

– SQL

• Frameworks

– Drupal (Forms API, Batch API, menu system, Schema API, et cetera)

– jQuery

– Episodes [52]

– Django’s [87] Storage class [88] and its dependencies

• APIs/libraries

– Browser.php [60]

– Google Chart API [59]

– FSEvents [64, 65] (through the Python-Objective-C bridge [67])

– inotify [62] (through the Python pyinotify [63] module)

– SQLite [68] (through the Python sqlite3 [73] module and the PHP
PDO [108] database abstraction layer)

– django-storages [89]

– cssutils [83]

• Uses the following third party applications

– ImageMagick [79]

– pngcrush [80]

– jpegtran [81]

– gifsicle [82]

– YUI Compressor [84]

• Supports the following storage systems

– FTP (via django-storages, through the Python ftplib [96] module)

– Amazon S3 [97] (via django-storages, through the Python boto [99]
module)

– Amazon CloudFront [98] (via django-storages, through the Python
boto [99] module)

• Integrates with the following applications

– Apache HTTP Server

70

12 Feedback from businesses

I had a nice list of seven companies who wanted to test my bachelor thesis,
either the CDN integration for Drupal using the CDN or just the daemon (for
either syncing files to a static file server or to back up servers).

I gave them more than three weeks time to test this, which is a fairly large
amount of time, considering that the whole timespan of the thesis was about
4 months. Unfortunately, these are actual companies, each with their own
schedules and clients to keep satisfied. So, as was to be expected, the feedback
I actually got was far more sparse than I hoped for. However unfortunate, this
is of course understandable.

Three CDNs promised me to provide me (and the businesses that were going to
test my work) free CDN accounts for testing purposes. Two of them immediately
gave me accounts: SimpleCDN [109] and Rambla [110]. Thanks!
I ensured the daemon’s FTP support was compatible with their FTP servers.

There are two companies that did give feedback though. Which is of course still
much better than none at all.

The company SlideME [111] evaluated the daemon I wrote, which is by far the
most important part of this thesis. They will be using it on a Drupal web
site though, but have to adapt the daemon first to match their infrastructure
(see later). My sincere thanks go to SlideME! What is interesting is that their
company is all about Android [113], another open source project.

SlideME is an industry pioneer in Android content delivery, cre-
ating the first application manager for discovering, downloading and
purchasing of Android applications directly to the device.

They are planning on using it with the following infrastructure:

1. MySQL database instance (with few slaves)

2. Dedicated “editor instance” (i.e. a single web server for the users that are
allowed to add content) with Amazon S3 to keep Drupal files and upload
new ones.

3. Multiple ”viewer instances” for regular users on Amazon Elastic Com-
pute Cloud (EC2, these are virtual server instances in the cloud) behind
Elastic Load Balancing (which distributes incoming traffic across multiple
Amazon EC2 instances).

Kay Webber, whom works for SlideME and is responsible for integrating my
daemon with the infrastructure, made four suggestions:

71

1. On his servers with the CentOS operating system , only Python 2.4
was available, whereas, my daemon requires Python 2.5. He made the
changes necessary to get it to work in Python 2.4. He did not manage
to find a pyinotify package for his Linux distribution however, making
fsmonitor.py fall back to the polling mechanism. However, not all of the
Python packages I use are guaranteed to work with Python 2.4 (because
Python 2.4 is quite old already, it was released in November 2004). On
most servers, it is possible to install Python 2.5 with a single command.

2. The daemon is run on the editor instance, but the database of synced files
needs to be accessed from the viewer instances as well. Therefor, he is
working on a patch to also support storing the synced files database in a
MySQL database (which supports replication) instead of just SQLite.

3. He would like to be able to use environment variables in the configuration
file. He is also working on a patch for this.

4. He needs the ability to upload “private” files to Amazon S3 (this works
using query string authentication, i.e. placing a combination of a public
key and a signature in the query string).

In response, I asked him a couple of questions:

• Was the documentation sufficient?

Thesis and readme are both very clear. Now I regret that I did not
finished my own bachelor degree ;) So the answer to your question
is yes.

• Did you find the setup easy? Do you think the configuration file is self-
explanatory?

The configuration file was mostly but not always self-explanatory.
For example, I missed the connection between <source name="drupal files">
and <rule for="drupal files"> and named them differently at
the beginning. But I have no suggestions for this case.
The documentation on setup is clear.

• Since you have already been writing patches: what did you think of the
code structure?

Clear and self-explanatory.

• How would you rate the performance? (Keeping in mind that discovering
files is orders of magnitude slower due to the fallback to polling for detect-
ing changes.) How many files are you syncing and what is their combined
size?

72

I have not started performance tests yet, so I cannot rate it.

The second company I got feedback from, is WorkHabit [112]. WorkHabit is a
company that aims to make scalable Drupal web sites easier.

WorkHabit is a leading provider of Social Software, Content Dis-
tribution, and Cloud Computing solutions that specializes in build-
ing sustainable businesses online.

Jonathan Lambert, the CEO, was very enthusiastic about the inotify support
of the daemon and the lossless compression of images (by removing metadata
and optimizing the way they are stored internally). He also really liked the idea
to be able to pick from within the CDN integration module for Drupal which
server files would be served to a visitor.
His company has a product which allows customers to use his “virtual CDN”.
This “virtual CDN” then uses multiple actual CDNs. This implies that files
must be synced to multiple servers and that is where my daemon could be very
useful. That is also the use he is evaluating it for.

So, overall, the impression seems to be very good. The feature set seems to be
strongly appreciated. The documentation in general, setting it up and the con-
figuration file were strongly approved. The code structure even more. Neither
had the time yet to do real-world tests.
The trend in the answers suggests that the code structure is sufficiently solid
and that it conceptually makes sense; that setup and configuration are suffi-
ciently straightforward; all of which hopefully is enough for this application to
become a healthy open source project.

73

13 Test case: DriverPacks.net

As a back-up plan in case there would not be much feedback from companies
(as turned out to be the case), I wanted to have a web site under my own
control to use as a test case. That web site is DriverPacks.net [114] (see the
figure below for a screenshot of its homepage). It is the web site of an open
source project, with more than 100,000 visits per month and more than 700,000
pageviews per month, with traffic coming from all around the world. These
fairly large numbers and the geographical spread of its visitors make it a good
test case for measuring the effect of a CDN. See figure 31 for a map and details.
Visitors come from 196 different countries, although the top three countries
represent more than a quarter of the visitors and the top ten countries represent
more than half of the visitors. Nevertheless, this is still a very geographically
dispersed audience.

Figure 30: DriverPacks.net homepage.

74

DriverPacks.net

The goal was obviously to port this site to Drupal (which is not a part of this
thesis of course) and to install the Episodes module. During about a week,
statistics would be collected while no CDN was being used. Then, I would
install the daemon on the server to sync the files to a CDN. Next, I would install
the Drupal CDN integration module. Then again for about a week, statistics
would be collected while the CDN was being used. Hopefully, by visualizing
the collected episode measurements, it would be confirmed that this had indeed
had a positive effect.

Implementation

The web site was previously a combination of static HTML and a bit of PHP.
On June 11, I launched the new web site, which was built using Drupal. Dru-
pal’s CSS and JavaScript aggregation options were enabled. Due to this, Drupal
combines the CSS files for the same media type (screen, all . . .) and in the
same section (header or footer) and the JavaScript file sin the same section
(header or footer), thereby already significantly reducing the number of HTTP
requests and page loading time. If I would have turned this on when enabling
CDN integration, the effect would have been far more significant. But the com-
parison would have been unfair. Hence, these options were enabled, right from
the beginning.
Also the JavaScript for the Google Analytics service has been cached on the web
server since the launch of the web site, because the Google Analytics module
for Drupal supports it. This makes it even harder to show the effect.
Finally, DriverPacks.net is a site with virtually no images (because it slows down
the page loading, but mostly because I am not a designer). Only two images
are loaded for the web site’s style, one is loaded for each of the two statistics
services and one is loaded for the ad at the top. Only the two images that are
part of the web site’s style can be cached. This makes it again more difficult to
show the effect.
This suggests that the results that will be observed should be magnified sig-
nificantly for more media-rich web sites, which is typically the case nowadays.
However, I did not have such a web site around to test with. It is likely that
if the effect is noticeable on this web site, it is dramatically noticeable on a
meda-rich web site.

On June 21 around 2 AM GMT+1, I enabled CDN integration for all users.
To show the potential of the daemon in combination with the CDN integra-
tion module however, I implemented the cdn advanced pick server() function
that the Drupal CDN integration module calls when it is running in advanced
mode and when that function exists. It really allows you to create any desired
logic for routing users to specific CDNs or static file servers, as is demonstrated
in listing 6.

Both a static file server and a CDN are being used, but not just for demonstrative
purposes. It was decided to use two servers because the latency to SimpleCDN’s
servers is higher than acceptable in Europe (around 100 milliseconds or more).
They claim to have servers in Amsterdam, but for some reason all requests from

75

Figure 31: Google Analytics’ Map Overlay view for DriverPacks.net.

76

Figure 32: Visitor location block.

my IP (in Belgium) are being routed to a datacenter in Phoenix, Arizona in the
United States, which explains the high latency (this was discovered using the
traceroute command). This was worse than not using a CDN for countries
with low-latency connections to Belgium. Since latency is the major problem in
the loading of CSS, JavaScript and other files referenced by the HTML (because
of the multitude of round trips due to HTTP requests), I measured this using
the ping command. I mostly relied on the “just ping” web service [115] to get
ping times from all around the world, to get a global view.
If only SimpleCDN would have been used, the web site would have become
significantly slower in Europe (also in Russia, but less dramatically) and it
would have been very likely that no improvement could be observed from the
collected statistics.

The static file server (labeled ’warp’) server is located in Berchem, Belgium
and uses the static.driverpacks.net domain name and is an Apache HTTP
server instance (with far future Expires headers, gzip enabled and Last-Modified
headers disabled) optimized for static file serving and the CDN (labeled ’sim-
plecdn’) server uses the cdn.driverpacks.net domain name. This is a DNS
CNAME record pointing to e1h21.simplecdn.net (this server is for SimpleCDN’s
“StormFront” service, which claims to have 9 POPs in the United States and 2
POPs in Europe). Files served from this domain have gzip enabled, far future
Expires headers and no Last-Modified headers. There are other CDN services
than SimpleCDN that provide POPs all over the world, as opposed to just two
continents. They are typically far more expensive though.

The Drupal ip2country module [61] is used to map an IP to a country code.
This module uses the database maintained by ARIN, the American Registry for
Internet Numbers. ARIN is one of the five official Regional Internet Registries
(RIR) responsible for assigning IP addresses. It is claimed to be 98% accurate,
which should be sufficiently accurate. Via the continents api module [117]
(which I wrote as an addition to the countries api module [116]), all country
codes for Europe are collected in an array. Russia’s country code is appended
to this array. This way, all European countries plus Russia are assigned to the
’warp’ server. Visitors from all other countries are assigned to the ’simplecdn’
server. This implies that files are being synced through the daemon to both the
’warp’ server (using the symlink or copy transporter, see section 9.3.6) and to
the ’simplecdn’ server (using the FTP transporter, again see section 9.3.6).

Visitors are informed on the homepage from which server they are getting their
static files, as can be seen in figure 32.

77

static.driverpacks.net
cdn.driverpacks.net
e1h21.simplecdn.net

Listing 6: cdn advanced pick server() function and helper function.
f unc t i on dr i v e rpack sne t map count ry to s e rve r ($country code) {

$ c oun t r i e s f o r wa rp s e r v e r = c on t i n e n t s a p i g e t c o un t r i e s (’EU ’) + array (’RU’) ;
i f (in array ($country code , $ c oun t r i e s f o r wa rp s e r v e r)) {

re turn ’warp ’ ;
}
else {

re turn ’ s implecdn ’ ;
}

}

/∗∗
∗ Implementation of cdn advanced pick server () .
∗/

f unc t i on cdn advanced p i ck se rve r ($ s e r v e r s f o r f i l e) {
s t a t i c $server name ;

i f (! i s set ($server name)) {
// Determine which server to use for the current v i s i t o r .
$ip = $ SERVER[’REMOTEADDR’] ;
$country code = ip2count ry ge t count ry ($ ip) ;
$server name = dr iv e rpack sne t map count ry to s e rve r ($country code) ;

}

// Try to pick the des ired server − i f the f i l e being served i s a v a i l a b l e on
// our the des i red server .
foreach ($ s e r v e r s f o r f i l e as $ s e r v e r f o r f i l e) {

i f ($ s e r v e r f o r f i l e [’ s e r v e r ’] == $server name) {
re turn $ s e r v e r f o r f i l e ;

}
}

// In case our des i red server does not have the f i l e , p ick the f i r s t server
// tha t does have i t .
re turn $ s e r v e r s f o r f i l e [0] ;

}

78

Figure 33: Episodes analysis: overall.

One day later, again around 2 AM GMT+1, I added some optimizations: from
that moment, Google Analytics’ JavaScript code was being executed after the
window.onload event. This caused the executing of JavaScript code and the
loading of an invisible 1x1 image to be delayed until after the page was fully
rendered, thereby speeding up the rendering of the page and thus the perceived
page load time.
The CSS and JavaScript of the delicious.com bookmarking widget (see the
bottom right of figure 30) on the homepage were also altered to be served from
DriverPacks.net’s web server (and after syncing, these files were being served
from either the static file server or the CDN). The AJAX request to delicious.
com’s servers was being delayed until after the window.onload event, i.e. when
the page was fully rendered. This is not annoying because the information in
this widget is not critical.
Finally, I also modified the loading of the image necessary for the whos.amung.
us statistics service [118]. Normally, this image is simply referenced from within
the HTML. However, now it is being detected on the server side if the visitor has
JavaScript enabled (Drupal then sets a has js cookie, which can be detected on
the server side) and in that case, a piece of JavaScript is inserted instead that
is executed after the window.onload event, which inserts the HTML that loads
the image. CSS is used to consume the whitespace until the image is loaded
(where otherwise the image would have been), to prevent annoying relayouting
(perceived as “flicker” by the end user).

Collected statistics

About 100 MB worth of statistics had been logged. These were then imported
on June 25 (using the Episodes Server module, see section 8.4), resulting in a
database table of 642.4 MB. More than 2.7 million episodes were collected over
more than 260,000 page views. See figure 33 for details (note: in the figure, the
times are in GMT, which explain the discrepancy in time span). All screenshots
listed in this subsection are made from the Episodes Server module running on
DriverPacks.net.

This means episode measurements have been collected since the beginning of
June 11 until the beginning of June 25, resulting in exactly two weeks of data,
with the last 4 days having CDN integration. This is in fact too short to see
the full effect of caching kicking in. DriverPacks.net’s visitors typically don’t
visit the site daily, but weekly or monthly. Hence many visitors have an empty
cache, which drives the measured durations up. Fortunately, the effect of the
CDN on visitors with an empty cache is clearly visible. The effect of visitors
with primed caches is also visible, but less explicit.

79

delicious.com
DriverPacks.net
delicious.com
delicious.com
whos.amung.us
whos.amung.us
DriverPacks.net
DriverPacks.net

Figure 34: Episodes analysis: page loading performance.

80

Now the interesting part begins. There are five charts in figure 34. The first four
display the average duration of the backend and frontend episodes per day, for
a given territory of visitors. The first chart gives the results for all collected
data, i.e. globally. The second chart is for Brazil, the third for the Netherlands
and the fourth for the United States. As we have seen, the United States and
Brazil represent the largest groups of visitors, so their results should closely
match the average real-world performance there, which means they should be
well represented in these charts. The Netherlands were chosen because a location
very close to the ’warp’ server was also needed. The Netherlands were chosen
over Belgium because more visitors originate from there, making the results
more representative. On average, the U.S. had about 2,800 page views per day,
Brazil had about 1,500 page views per day and the Netherlands had about 350
daily page views.
The fifth and last chart compares the average duration of the frontend episodes
per day of the three countries with the global averages.

As this bachelor thesis is not page rendering performance, but about page load-
ing performance, the charted data for backend episodes can be ignored. I have
no explanation for why it peaks at different times around the world.
The frontend episodes contain the durations of loading all CSS, JavaScript and
images.

Looking at the frontend episode durations in the first four charts, it is clear
that in the period from June 11 until June 21, the variability in page loading
time was very large. This may suggest that measurements are not taken over
enough page views from a global point of view, but in the case of the United
States and Brazil, which both had more than 2,500 page views per day (which
should be sufficient to cancel out anomalies), it suggests that the variability of
network latency (due to distance or congestion) can be great. This can probably
be explained by the fact that most files had to be retrieved from the web server
in Belgium. Belgium is a long distance from Brazil and the United States and
therefor there are more opportunities (at every hop along the route) for the
latency to increase, which is possibly the reason for the large variability.

Starting June 21, which is the date when CDN integration was enabled, there is
a slight increase in some countries, but globally, there is a slight decrease. This
is to be expected, as the frequent visitors have to download the static files again,
this time from the CDN (’simplecdn’ server) or static file server (’warp’ server).
On June 22, when another batch of changes was applied and the cached CSS
and JavaScript files were once again obsolete, there is a slight increase globally,
but a significant drop in the Netherlands.
It is likely that this is because whereas Dutch visitors previously had to wait for
as much as five round trips to the United States (three to the delicious.com
servers, one to Google Analytics’ server and one to the additional statistics
service’s server), that is now reduced to just three (the CSS and JavaScript files
for the delicious.com widget are being served from the CDN or, in the case
of the Netherlands, from the static file server in Belgium).
However, starting on June 23, there is a clear, worldwide, downward trend.
Especially in Brazil and the United States, this trend is very prominently visible
in the charts. It is less strong in the Netherlands, because they were getting

81

delicious.com
delicious.com

their files already from a server with a fairly small latency. The reason it drops
even further for the Netherlands likely is that the static file server is configured
properly to maximize client-side caching (i.e. in the visitor’s browser), whereas
before the CDN and static file server were being used, static files were being
served using the default Apache settings.

Finally, there is the analysis of the duration of the episodes (see figure 35)
themselves, regardless of country. Through this chart, it is possible to examine
which episode have the greatest impact on the overal page loading time and
would thus benefit the most from optimizations. Unfortunately, I did not have
the time to create a chart that displays the evolution over time. So it is currently
impossible to see how much a specific episode has improved over time.
However, it is very clear that the headerjs episode (which represents the episode
of loading the JavaScript in the <head> element of the HTML document) is
by far the episode with the longest duration, thus is the best candidate for
optimization. Probably even after CDN integration, this episode will remain
the longest.

Conclusion

Globally, there has been a strong decrease in the page loading time and thus a
strong increase in page loading performance. And since this test was conducted
on a media-poor web site, it is likely that the effect is dramatically more no-
ticeable on a media-rich web site. Since the downward trend lasted two days,
it seems likely that the page loading time will become less variable because the
static files have been cached in the browser.

Especially for countries that are located far from Belgium, such as Brazil and the
United States, variability seems to have decreased significantly. This suggests
that adding more servers around the world, at strategic locations (for example
in the case of DriverPacks.net, Bangkok in Thailand is the city that generates
the most visitors around the world according to Google Analytics), may be a
very effective method for improving page loading performance. Depending on
the web site, this strategy may achieve equal or better performance than a CDN
with servers all around the world, at a fraction of the cost.

It is certain that every web site can benefit from an analysis like the one above.
The strategy to optimize page loading performance is different for every web
site.

82

DriverPacks.net

Figure 35: Episodes analysis: episodes.

83

14 Conclusion

The goal of this bachelor thesis is improving Drupal’s page loading performance.
But in order to guarantee that my attempted improvements to Drupal actually
have an effect, I had to be able to measure the results.

After analyzing a broad set of page loading performance profiling tools (and re-
lated tools), it became clear that Episodes (which was written as a prototype by
Steve Souders, whom can be considered the evangelizer of page loading perfor-
mance) was the best candidate: it is the only one that is capable of measuring
the real-world page loading performance, the results from the actual people
using it. Furthermore, it has the most potential for becoming the standard pro-
filing tool over the next few years and even to become integrated with future
browsers.
So I polished the code, made it ready (or at least usable) for the real world and
integrated it with Drupal: the Drupal Episodes module. The integration with
Drupal happens in such a way that all Drupal behaviors (all JavaScript behav-
iors are defined using a standardized Drupal JavaScript API) are automatically
measured. All that is needed, are a couple of changes to the theme to make the
measurements cover all aspects.
This module is ready for use in production.

I also made another Drupal module (the Episodes Server module) that is able
to import the logs collected through Episodes and visualize the measurements
through charts. Thanks to these charts, you can track the real-world page
loading performance over time and even compare the page loading performance
of multiple countries simultaneously with the global page loading performance.
It also allows you to find out which episodes are the biggest bottlenecks for a
better page loading time.
This module is not ready for production, but is a good base to start from.
The code that imports the logs into the database is covered by unit tests. The
code is licensed under the GPL and available at http://drupal.org/project/
episodes.

Then there is the daemon for syncing files, of course. This was the most im-
portant part of this thesis. As odd as it may seem, there seems to be nothing
similar in existence, or at least not publicly available (not even commercially).
If it did exist, I would surely have been informed by one of the tens of people
who know about the concept of my bachelor thesis.
I started with the configuration file design. The configuration of the daemon
happens through an XML file that is designed to be easy to use if you are famil-
iar with the terminology. Several people who are familiar with the terminology
were asked to look at it and immediately responded that it made sense. It is
important that this is easy, because this is the interface to the daemon.
I decomposed the daemon into major components and started with the most
simple one, because I was writing this in Python, a language that I had never
used before, but was rumored to be extremely easy to program in — this ease
was supposedly partially thanks to the availability of modules for nearly every-
thing imaginable. Fortunately, that turned out to be the case, although I had

84

http://drupal.org/project/episodes
http://drupal.org/project/episodes

been fearing for a long time that I had to write all the code for transporters
myself — a near impossible challenge given the timeframe.
This is why the daemon in fact is just a set of Python modules that can be
used in any application. For example, in the case of the fsmonitor.py module
— which abstracts file system monitors on different operating systems, thereby
creating a cross-platform API — it is certainly possible that it will be reused
by other applications.
Thus I wrote a fairly large set of Python modules: config.py, daemon thread runner.py,
filter.py, fsmonitor.py (with one subclass for every supported operating sys-
tem), pathscanner.py, persistent list.py, persistent queue,py, processor.py
(with a set of subclasses, one for each processor) and transporter.py (with
subclasses that are very thin wrappers around Django custom storage systems).
Whenever feasible, I wrote unit tests. But because this application involves a
lot of file I/O and network I/O due to its nature, this was often extremely hard
and thus skipped. For fsmonitor support in Linux, I was able to build upon
the pyinotify module and for the transporters, I was able to completely reuse
Django’s custom storage systems. All other modules are completely my own
product.
This has an interesting side effect: arbitrator.py, the module that links all
these stand-alone modules together into a single whole, i.e. which arbitrates
between all different modules, can easily be refactored completely. While it is
almost a thousand lines of code (albeit with a lot of comments), the code could
easily be rewritten completely as part of a redesign, and you would only have to
write the logic that links all modules together. This means that in a worst case
scenario, for example, the daemon is found to have a bottleneck in a certain
situation due to a design flaw, it can easily be adapted, because all the logic
of the daemon itself is embedded in a single module. Only that part must be
rewritten.
Because it is impossible to be sure that the daemon works correctly and reliably
in every environment and with every possible configuration, it is recommended
that a company first simulates its use case and verifies that the daemon works
to its expectations. The code is licensed under the GPL and will be made avail-
able on a web site (but a name for the daemon has not yet been decided on).
Hopefully, others will start contributing to it to improve it further to make it
suitable for more situations.

A Drupal module for easy integration with CDNs was also written: the CDN in-
tegration module. However, I first had to write a patch for Drupal core, because
it is necessary to be able to alter the URLs to files that are generated by default,
because it is necessary to point them to the files on the CDN instead of those
on the web server. A patch for Drupal 7 (which is currently in development), to
make this functionality part of Drupal core in the future, has had very positive
reviews, but must still go through the minutious peer review process and will
likely soon get committed.
In the Drupal module, two modes are available: basic and advanced. In basic
mode, it can only be used with Origin Pull CDNs. But because it now makes
this very easy, whereas it previously required a lot of manual fiddling, this alone
is a worthy addition to the Drupal contributed modules. However, in advanced
mode, it becomes truly interesting: then it uses the synced files database gen-
erated by the daemon to rewrite file URLs. It is even possible to implement a

85

special callback function which can be used to select a specific server to serve
the files from based on properties of the visitor (location, membership type,
anything).
This module is also ready for use in production. The code is licensed under the
GPL and is available at http://drupal.org/project/cdn.

The feedback from companies was underwhelming in numbers but overwhelming
in positivity. I could not have hoped for more positive feedback. The possibilities
the daemon offers were strongly appreciated. The code structure of the daemon
was described as “clear and self-explanatory” and the documentation (of the
daemon itself and my description of it in this thesis text) as “very clear”. It
even made a reviewer regret that he did not finish his own bachelor degree. This
reviewer was even so enthusiastic that he already started writing patches for the
daemon so that it would better suit his infrastructure. This suggests that it is
feasible that the daemon will become a lively open source project.

Finally, the results of my own testing case confirmed the thesis that integrating
Drupal with a CDN could further improve the page loading performance. While
the results (as logged via the Episodes module) were not as explicit as they could
have been for a media-rich site (my test case was a media-poor web site), the
difference was still clearly discernable in the charts (as generated by the Episodes
Server module). Despite the fact that the web site had already been optimized
with the mechanisms available in Drupal by default, integrating it with a CDN
(via the CDN integration module and the daemon), clearly improved the overall,
worldwide page loading performance.

86

http://drupal.org/project/cdn

References

[1] High Performance Web Sites, Steve Souders, 2007, O’Reilly, http://
stevesouders.com/hpws/

[2] Drupal, http://drupal.org/

[3] History, http://drupal.org/node/769

[4] Principles, http://drupal.org/principles

[5] Drupal.org Explosion and Trends, Steven Wittens, March 2007, http:
//acko.net/blog/drupal-org-explosion-and-trends

[6] Drupal 6 growth, Dries Buytaert, April 2009, http://buytaert.net/
drupal-6-growth

[7] Drupal sites, Dries Buytaert, http://buytaert.net/tag/drupal-sites

[8] On backward compatibility: the drop is always moving, http://drupal.
org/node/65922

[9] Coding standards, http://drupal.org/coding-standards

[10] Security Team, http://drupal.org/security-team

[11] Modules, http://drupal.org/project/modules

[12] Themes, http://drupal.org/project/themes

[13] Design Fast Websites, Nicole Sullivan, 2008, http://www.slideshare.
net/stubbornella/designing-fast-websites-presentation

[14] We’re all guinea pigs in Google’s search experiment, Stephen Shankland,
http://news.cnet.com/8301-10784_3-9954972-7.html

[15] Usage statistics for Drupal, http://drupal.org/project/usage/drupal

[16] Improving Drupal’s page loading performance, Wim
Leers, January 2008, http://wimleers.com/article/
improving-drupals-page-loading-performance

[17] Content Owners Struggling To Compare One CDN To Another,
March 2008, http://blog.streamingmedia.com/the_business_of_
online_vi/2008/03/content-owners.html

[18] How Is CDNs Network Performance For Streaming Measured?,
August 2007, http://blog.streamingmedia.com/the_business_of_
online_vi/2007/08/cdns-network-pe.html

[19] Performance Analysis, http://en.wikipedia.org/wiki/Performance_
analysis

[20] UA Profiler, Steve Souders, 2008, http://stevesouders.com/ua/

[21] Cuzillion, Steve Souders, 2008, http://stevesouders.com/cuzillion/

87

http://stevesouders.com/hpws/
http://stevesouders.com/hpws/
http://drupal.org/
http://drupal.org/node/769
http://drupal.org/principles
http://acko.net/blog/drupal-org-explosion-and-trends
http://acko.net/blog/drupal-org-explosion-and-trends
http://buytaert.net/drupal-6-growth
http://buytaert.net/drupal-6-growth
http://buytaert.net/tag/drupal-sites
http://drupal.org/node/65922
http://drupal.org/node/65922
http://drupal.org/coding-standards
http://drupal.org/security-team
http://drupal.org/project/modules
http://drupal.org/project/themes
http://www.slideshare.net/stubbornella/designing-fast-websites-presentation
http://www.slideshare.net/stubbornella/designing-fast-websites-presentation
http://news.cnet.com/8301-10784_3-9954972-7.html
http://drupal.org/project/usage/drupal
http://wimleers.com/article/improving-drupals-page-loading-performance
http://wimleers.com/article/improving-drupals-page-loading-performance
http://blog.streamingmedia.com/the_business_of_online_vi/2008/03/content-owners.html
http://blog.streamingmedia.com/the_business_of_online_vi/2008/03/content-owners.html
http://blog.streamingmedia.com/the_business_of_online_vi/2007/08/cdns-network-pe.html
http://blog.streamingmedia.com/the_business_of_online_vi/2007/08/cdns-network-pe.html
http://en.wikipedia.org/wiki/Performance_analysis
http://en.wikipedia.org/wiki/Performance_analysis
http://stevesouders.com/ua/
http://stevesouders.com/cuzillion/

[22] Cuzillion, Steve Souders, 2008, http://www.stevesouders.com/blog/
2008/04/25/cuzillion/

[23] Hammerhead, Steve Souders, 2008, http://stevesouders.com/
hammerhead/

[24] Hammerhead: moving performance testing upstream, Steve Souders,
September 2008, http://www.stevesouders.com/blog/2008/09/30/
hammerhead-moving-performance-testing-upstream/

[25] Firebug, http://getfirebug.com/

[26] Fasterfox, http://fasterfox.mozdev.org/

[27] YSlow, Steve Souders, 2007, http://developer.yahoo.com/yslow/

[28] Exceptional Performance, 2007, http://developer.yahoo.com/
performance/index.html

[29] Best Practices for Speeding Up Your Web Site, 2008, http://developer.
yahoo.com/performance/rules.html

[30] YSlow: Yahoo’s Problems Are Not Your Problems, Jeff Atwood, 2007,
http://www.codinghorror.com/blog/archives/000932.html

[31] YSlow 2.0 early preview in China, Yahoo! Developer Network,
2008, http://developer.yahoo.net/blog/archives/2008/12/yslow_
20.html

[32] State of Performance 2008, Steve Souders, 2008, http://www.
stevesouders.com/blog/2008/12/17/state-of-performance-2008/

[33] Apache JMeter, http://jakarta.apache.org/jmeter/

[34] Load test your Drupal application scalability with Apache JMe-
ter, John Quinn, 2008, http://www.johnandcailin.com/blog/john/
load-test-your-drupal-application-scalability-apache-jmeter

[35] Load test your Drupal application scalability with Apache JMeter: part
two, John Quinn, 2008, http://www.johnandcailin.com/blog/john/
load-test-your-drupal-application-scalability-apache-jmeter:
-part-two

[36] Gomez, http://www.gomez.com/

[37] Keynote, http://www.keynote.com/

[38] WebMetrics, http://www.webmetrics.com/

[39] Pingdom, http://pingdom.com/

[40] AJAX, http://en.wikipedia.org/wiki/AJAX

[41] Selenium, http://seleniumhq.org/

[42] Keynote KITE, http://kite.keynote.com/

88

http://www.stevesouders.com/blog/2008/04/25/cuzillion/
http://www.stevesouders.com/blog/2008/04/25/cuzillion/
http://stevesouders.com/hammerhead/
http://stevesouders.com/hammerhead/
http://www.stevesouders.com/blog/2008/09/30/hammerhead-moving-performance-testing-upstream/
http://www.stevesouders.com/blog/2008/09/30/hammerhead-moving-performance-testing-upstream/
http://getfirebug.com/
http://fasterfox.mozdev.org/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/performance/index.html
http://developer.yahoo.com/performance/index.html
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
http://www.codinghorror.com/blog/archives/000932.html
http://developer.yahoo.net/blog/archives/2008/12/yslow_20.html
http://developer.yahoo.net/blog/archives/2008/12/yslow_20.html
http://www.stevesouders.com/blog/2008/12/17/state-of-performance-2008/
http://www.stevesouders.com/blog/2008/12/17/state-of-performance-2008/
http://jakarta.apache.org/jmeter/
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter:-part-two
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter:-part-two
http://www.johnandcailin.com/blog/john/load-test-your-drupal-application-scalability-apache-jmeter:-part-two
http://www.gomez.com/
http://www.keynote.com/
http://www.webmetrics.com/
http://pingdom.com/
http://en.wikipedia.org/wiki/AJAX
http://seleniumhq.org/
http://kite.keynote.com/

[43] Gomez Script Recorder, http://www.gomeznetworks.com/help/Gomezu/
main/Gomez_university/3_Gomez_Script_Recorder/toc.htm

[44] WhitePages, http://whitepages.com/

[45] Velocity 2008, Jiffy: Open Source Performance Measurement and
Instrumentation, Scott Ruthfield, 2008, http://en.oreilly.com/
velocity2008/public/schedule/detail/4404

[46] Velocity 2008, video of the Jiffy presentation, Scott Ruthfield, 2008, http:
//blip.tv/file/1018527

[47] Jiffy, http://code.google.com/p/jiffy-web/

[48] Jiffy Firebug Extension, http://billwscott.com/jiffyext/

[49] Episodes: a Framework for Measuring Web Page Load Times, Steve Soud-
ers, July 2008, http://stevesouders.com/episodes/paper.php

[50] Episodes: a shared approach for timing web pages, Steve Souders, 2008,
http://stevesouders.com/docs/episodes-tae-20080930.ppt

[51] Google Analytics, http://google.com/analytics

[52] Episodes, Steve Souders, 2008, http://stevesouders.com/episodes/

[53] Episodes: a Framework for Measuring Web Page Load Times, Steve Soud-
ers, July 2008, http://stevesouders.com/episodes/paper.php

[54] Episodes Drupal module, Wim Leers, 2009, http://drupal.org/
project/episodes

[55] Episodes Example, Steve Souders, 2008, http://stevesouders.com/
episodes/example.php

[56] Batch API, Drupal 6, http://api.drupal.org/api/group/batch/6

[57] Forms API, Drupal 6, http://api.drupal.org/api/group/form_api/6

[58] Hierarchical Select module, Wim Leers, http://drupal.org/project/
hierarchical_select

[59] Google Chart API, http://code.google.com/apis/chart/

[60] Browser.php, Chris Schuld, 2009, http://chrisschuld.com/projects/
browser-php-detecting-a-users-browser-from-php/

[61] IP-based Determination of a Visitor’s Country, http://drupal.org/
project/ip2country

[62] inotify, http://en.wikipedia.org/wiki/Inotify

[63] pyinotify, http://pyinotify.sourceforge.net/

[64] FSEvents Programming Guide, 2008, http://developer.apple.
com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
Introduction/Introduction.html

89

http://www.gomeznetworks.com/help/Gomezu/main/Gomez_university/3_Gomez_Script_Recorder/toc.htm
http://www.gomeznetworks.com/help/Gomezu/main/Gomez_university/3_Gomez_Script_Recorder/toc.htm
http://whitepages.com/
http://en.oreilly.com/velocity2008/public/schedule/detail/4404
http://en.oreilly.com/velocity2008/public/schedule/detail/4404
http://blip.tv/file/1018527
http://blip.tv/file/1018527
http://code.google.com/p/jiffy-web/
http://billwscott.com/jiffyext/
http://stevesouders.com/episodes/paper.php
http://stevesouders.com/docs/episodes-tae-20080930.ppt
http://google.com/analytics
http://stevesouders.com/episodes/
http://stevesouders.com/episodes/paper.php
http://drupal.org/project/episodes
http://drupal.org/project/episodes
http://stevesouders.com/episodes/example.php
http://stevesouders.com/episodes/example.php
http://api.drupal.org/api/group/batch/6
http://api.drupal.org/api/group/form_api/6
http://drupal.org/project/hierarchical_select
http://drupal.org/project/hierarchical_select
http://code.google.com/apis/chart/
http://chrisschuld.com/projects/browser-php-detecting-a-users-browser-from-php/
http://chrisschuld.com/projects/browser-php-detecting-a-users-browser-from-php/
http://drupal.org/project/ip2country
http://drupal.org/project/ip2country
http://en.wikipedia.org/wiki/Inotify
http://pyinotify.sourceforge.net/
http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html

[65] FSEvents review, John Siracusa, 2007, http://arstechnica.com/apple/
reviews/2007/10/mac-os-x-10-5.ars/7

[66] Watch a Directory for Changes, Tim Golden, http://timgolden.me.uk/
python/win32_how_do_i/watch_directory_for_changes.html

[67] PyObj C, http://pyobjc.sourceforge.net/

[68] SQLite, http://www.sqlite.org/

[69] How SQLite is Tested, http://www.sqlite.org/testing.html

[70] Appropriate Uses For SQLite, http://www.sqlite.org/whentouse.
html

[71] Well-Known Users of SQLite, http://www.sqlite.org/famous.html

[72] shelve - Python object persistence, http://docs.python.org/library/
shelve.html

[73] pysqlite, http://docs.python.org/library/sqlite3.html

[74] smush.it, http://smush.it/

[75] Image Optimization Part 1: The Importance of Images, Stoyan Stefanov,
2008, http://yuiblog.com/blog/2008/10/29/imageopt-1/

[76] Image Optimization Part 2: Selecting the Right File Format, Stoyan Ste-
fanov, 2008, http://yuiblog.com/blog/2008/11/04/imageopt-2/

[77] Image Optimization, Part 3: Four Steps to File Size Reduction, Stoyan
Stefanov, 2008, http://yuiblog.com/blog/2008/11/14/imageopt-3/

[78] Image Optimization, Part 4: Progressive JPEG . . . Hot or Not?, Stoyan
Stefanov, 2008, http://yuiblog.com/blog/2008/12/05/imageopt-4/

[79] ImageMagick, http://imagemagick.org/

[80] pngcrush, http://pmt.sourceforge.net/pngcrush/

[81] jpegtran, http://jpegclub.org/

[82] gifsicle, http://www.lcdf.org/gifsicle/

[83] cssutils, http://cthedot.de/cssutils/

[84] YUI Compressor, http://www.julienlecomte.net/blog/2007/08/11/

[85] Rhino, http://www.mozilla.org/rhino/

[86] JSMin, The JavaScript Minifier, Douglas Crockford, 2003, http://
javascript.crockford.com/jsmin.html

[87] Django, http://www.djangoproject.com/

[88] Writing a custom storage system, Django 1.0 documentation, http://
docs.djangoproject.com/en/1.0/howto/custom-file-storage/

90

http://arstechnica.com/apple/reviews/2007/10/mac-os-x-10-5.ars/7
http://arstechnica.com/apple/reviews/2007/10/mac-os-x-10-5.ars/7
http://timgolden.me.uk/python/win32_how_do_i/watch_directory_for_changes.html
http://timgolden.me.uk/python/win32_how_do_i/watch_directory_for_changes.html
http://pyobjc.sourceforge.net/
http://www.sqlite.org/
http://www.sqlite.org/testing.html
http://www.sqlite.org/whentouse.html
http://www.sqlite.org/whentouse.html
http://www.sqlite.org/famous.html
http://docs.python.org/library/shelve.html
http://docs.python.org/library/shelve.html
http://docs.python.org/library/sqlite3.html
http://smush.it/
http://yuiblog.com/blog/2008/10/29/imageopt-1/
http://yuiblog.com/blog/2008/11/04/imageopt-2/
http://yuiblog.com/blog/2008/11/14/imageopt-3/
http://yuiblog.com/blog/2008/12/05/imageopt-4/
http://imagemagick.org/
http://pmt.sourceforge.net/pngcrush/
http://jpegclub.org/
http://www.lcdf.org/gifsicle/
http://cthedot.de/cssutils/
http://www.julienlecomte.net/blog/2007/08/11/
http://www.mozilla.org/rhino/
http://javascript.crockford.com/jsmin.html
http://javascript.crockford.com/jsmin.html
http://www.djangoproject.com/
http://docs.djangoproject.com/en/1.0/howto/custom-file-storage/
http://docs.djangoproject.com/en/1.0/howto/custom-file-storage/

[89] django-storages, David Larlet et al., http://code.welldev.org/
django-storages/wiki/Home

[90] Cloud Files, http://www.rackspacecloud.com/cloud_hosting_
products/files

[91] Support for CloudFiles CDN?, Tomas J. Fulopp, 2009http://drupal.
org/node/469526

[92] django-cumulus, Rich Leland, 2009http://github.com/richleland/
django-cumulus/tree/master

[93] FTPStorage: saving large files + more robust exists(), Wim
Leers, 2009, http://code.welldev.org/django-storages/issue/4/
ftpstorage-saving-large-files-+-more-robust

[94] S3BotoStorage: set Content-Type header, ACL fixed, use
HTTP and disable query auth by default, Wim Leers,
2009, http://code.welldev.org/django-storages/issue/5/
s3botostorage-set-content-type-header-acl-fixed-use-http-and-disable-query-auth-by

[95] SymlinkOrCopyStorage: new custom storage system, Wim Leers,
2009, http://code.welldev.org/django-storages/issue/6/
symlinkorcopystorage-new-custom-storage

[96] ftplib — FTP protocol client, http://docs.python.org/library/
ftplib.html

[97] Amazon S3, http://aws.amazon.com/s3/

[98] Amazon CloudFront, http://aws.amazon.com/cloudfront/

[99] boto, http://code.google.com/p/boto/

[100] MogileFS, http://www.danga.com/mogilefs/

[101] Apache CouchDB, http://couchdb.apache.org/

[102] Stopping and Restarting - Apache HTTP Server, http://httpd.apache.
org/docs/2.2/stopping.html

[103] Pipes and Filters, http://en.wikipedia.org/wiki/Pipes_and_filters

[104] Pipes and Filters, Jorge Luis Ortega Arjona, Department of Computer
Science of the University College London, http://www.cs.ucl.ac.uk/
staff/J.Ortega-Arjona/patterns/PF.html

[105] Pipe-and-filter, Jike Chong; Arlo Faria; Satish Nadathur; Young-
min Yi, Electrical Engineering and Computer Sciences department
of UC Berkely, http://parlab.eecs.berkeley.edu/wiki/patterns/
pipe-and-filter

[106] Pipes and Filters, Enterprise Integration Patterns, http://www.
eaipatterns.com/PipesAndFilters.html

[107] Currying, http://en.wikipedia.org/wiki/Currying

91

http://code.welldev.org/django-storages/wiki/Home
http://code.welldev.org/django-storages/wiki/Home
http://www.rackspacecloud.com/cloud_hosting_products/files
http://www.rackspacecloud.com/cloud_hosting_products/files
http://drupal.org/node/469526
http://drupal.org/node/469526
http://github.com/richleland/django-cumulus/tree/master
http://github.com/richleland/django-cumulus/tree/master
http://code.welldev.org/django-storages/issue/4/ftpstorage-saving-large-files-+-more-robust
http://code.welldev.org/django-storages/issue/4/ftpstorage-saving-large-files-+-more-robust
http://code.welldev.org/django-storages/issue/5/s3botostorage-set-content-type-header-acl-fixed-use-http-and-disable-query-auth-by
http://code.welldev.org/django-storages/issue/5/s3botostorage-set-content-type-header-acl-fixed-use-http-and-disable-query-auth-by
http://code.welldev.org/django-storages/issue/6/symlinkorcopystorage-new-custom-storage
http://code.welldev.org/django-storages/issue/6/symlinkorcopystorage-new-custom-storage
http://docs.python.org/library/ftplib.html
http://docs.python.org/library/ftplib.html
http://aws.amazon.com/s3/
http://aws.amazon.com/cloudfront/
http://code.google.com/p/boto/
http://www.danga.com/mogilefs/
http://couchdb.apache.org/
http://httpd.apache.org/docs/2.2/stopping.html
http://httpd.apache.org/docs/2.2/stopping.html
http://en.wikipedia.org/wiki/Pipes_and_filters
http://www.cs.ucl.ac.uk/staff/J.Ortega-Arjona/patterns/PF.html
http://www.cs.ucl.ac.uk/staff/J.Ortega-Arjona/patterns/PF.html
http://parlab.eecs.berkeley.edu/wiki/patterns/pipe-and-filter
http://parlab.eecs.berkeley.edu/wiki/patterns/pipe-and-filter
http://www.eaipatterns.com/PipesAndFilters.html
http://www.eaipatterns.com/PipesAndFilters.html
http://en.wikipedia.org/wiki/Currying

[108] PDO, http://php.net/pdo

[109] SimpleCDN, http://www.simplecdn.com/

[110] Rambla, http://rambla.be/

[111] SlideME LLC, http://slideme.org/

[112] WorkHabit, http://workhabit.com/

[113] Android, http://www.android.com/

[114] DriverPacks.net, http://driverpacks.net/

[115] Just Ping, http://just-ping.com/

[116] Country codes API, http://drupal.org/project/countries_api

[117] Continents API, http://drupal.org/node/255215#comment-1722758

[118] whos.amung.us, whos.amung.us

92

http://php.net/pdo
http://www.simplecdn.com/
http://rambla.be/
http://slideme.org/
http://workhabit.com/
http://www.android.com/
http://driverpacks.net/
http://just-ping.com/
http://drupal.org/project/countries_api
http://drupal.org/node/255215#comment-1722758
whos.amung.us

