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Abstract

The goal of this master thesis is to make a useful contribution to the upcom-
ing Web Performance Optimization field, or WPO for short. The importance
of WPO is only growing, and as it grows, the need for tools that can assist
developers in making the right decisions also grows. Hence that is the goal
of this thesis: to build a tool that can be used for the continuous profiling of
a web site’s performance.

The developer begins by integrating Episodes (a tool for measuring how long
the various episodes of the page loading process take) with the web site, which
will log the measured results to an Episodes log file. This log file by itself is a
good set of data that can be interpreted, but it would be too time-intensive
to manually analyze it. Hence we want to automate this analysis, and this
is why the thesis is titled “Web Performance Optimization: Analytics”.

We call this analysis Episodes log mining, which is a specialization of web
usage mining. However, web usage mining is only designed to work with
static data sets (that are updated in batches), while an Episodes log file
is updated continuously: it should be considered a data stream. Hence data
stream mining has also been studied: both frequent item mining and frequent
itemset mining algorithms have been looked into. However, frequent pattern
mining algorithms can only find problems that persist over relatively long
periods over time. We also want to detect brief problems, that are typically
caused by traffic spikes; i.e. infrequent issues. To achieve this, anomaly
detection has been investigated as well.

Finally, automatically detecting problems and presenting them to the user is
great, but the user may also want to inspect all measurements himself. That
can be achieved with OLAP techniques and more specifically the data cube,
which is a data structure designed to be able to quickly answer queries about
multidimensional data.
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1 Introduction

My bachelor thesis [1] was about making Drupal [2] web sites load faster.
80 to 90% of the response time (as observed by the end user) is spent on
downloading the components of a web page [4]. Therefor this is also the
part where optimizations have the largest effect—optimizing the code that
renders the pages has far less effect.

To be able to prove the positive impact of optimizing the loading of the
components of a web site—thereby proving that the work I was going to
have done had a positive impact—I researched existing page loading profiling
tools. Episodes [5, 6] (which refers to the various episodes in the page loading
sequence) came out as a clear winner:

e Episodes aims to become an industry standard;
e Episodes is open source;

e Episodes is a piece of JavaScript that runs in the browser on each loaded
page, thus for each real visitor, thus it represents the real-world per-
formance (all existing solutions [7, 8, 9, 10] require simulations, which
implies they're also only suitable for simulating traffic on a new ver-
sion of a web site before it goes live—they required simulations when
I wrote my bachelor thesis in 2009, and still do at the time of writing
this, in May 2010);

e Episodes does not require any hardware other than a server to log to.

Also as part of my bachelor thesis, I wrote a simple Drupal module—the
Episodes module [11]—that could create simple charts to compare the aver-
age page loading time per day per geographic region. For my test case, with
two weeks of collecting data, this was the resulting dataset:

About two weeks, or 100 MB worth of statistics, had been
logged. These were then imported on June 25, resulting in a
database table of 642.4 MB. More than 2.7 million episodes were
collected over more than 260,000 page views.

While my test case was a fairly big web site (500,000-1,000,000 page views
per month), that is nothing when compared with the top-100 web sites. And
even for these mere 2.7 million recorded episodes, it took several minutes to
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Figure 1: Episodes analysis charts about episodes generated by the Drupal
Episodes module.

generate simple charts (see figures 1 and 2). And that doesn’t include the
time for importing the log file into the database.

That is of course largely due to the fact that the database schema used was
extremely inefficient: it was in fact a verbatim copy of the log file. The
database schema should be optimized for the queries that are necessary to
generate the charts. In that implementation, multiple full table scans were
required, which is something that should be absolutely avoided when building
an application on top of an RDBMS, because it guarantees poor performance.

Despite its obvious (intended) lack of optimizations, it was sufficient to prove
that File Conveyor [3]—the daemon that I wrote to automatically sync files
to any CDN, regardlesss of the file transfer protocol used—when integrated
with a Drupal web site and thus providing CDN integration for that web site,
had a positive impact: the test web site consistently loaded about twice as
fast, especially for visitors with slower internet connections, such as visitors
from Brazil. Without this proof-of-concept implementation, I would never
have been able to prove the positive impact on performance.
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Figure 2: Episodes analysis charts about page loading performance generated
by the Drupal Episodes module. 3



1.1 Continuous Profiling

The main problem is that sites are too slow. In my bachelor thesis, I imple-
mented a daemon to synchronize files to a CDN, which is one of the most
important ways to speed up the loading of a web site.

However, simply implementing all known tricks is not enough, because using
a CDN might speed up your web site for half your visitors and slow it down
for the other half—although that is an extremely unlikely scenario. That
is why you need to be able to do Continuous Profiling (cfr. Continuous
Integration).

Continuous Profiling means that you are continuously monitoring your real-
world web performance: you must track the page loading characteristics of
each loaded page! That by itself is easy: all it requires is to integrate Episodes
with your web site. The actual problem lies in analyzing the collected data.
To be able to draw meaningful conclusions from the collected data, we need
to apply data mining techniques as well as visualizing the conclusions that
are found. E.g. pages may be loading slower from South-Africa because the
CDN’s server there (a PoP) is offline, or your shopping cart checkout page
may be loading slow in Firefox because of a JavaScript issue, or a particular
page may be loading slow in all web browsers because of bad CSS on that
page, or maybe your site is loading very slow for all users of a certain ISP
because their DNS server has poor performance. All of these problems (and
more) could be pinpointed (albeit partially) automatically.

Hence, that is what the goal is of this thesis: to build something like Google
Analytics, but for web performance (page loading performance) instead of just
page loads. An analytics suite for tracking web performance. An application
that can automatically extract conclusions out of Episodes logs and visualize
them. This application should be very scalable (as the number of recorded
episodes is typically an order of magnitude higher than the number of page
views) and possibly also distributed. You should also be able to go back to
any point in the past and view the web performance at that time. Thus,
efficient storage is also a requirement. Finally, it should be an open source
application that can be developed further by others after I finish my master
thesis.

I told Steve Souders about my idea for my master thesis—he is the most
prominent speaker, researcher and evangelizer in the web performance opti-
mization scene and on Google’s payroll to push this forward—and asked him
for feedback. His response:

I did a mini performance conference in LA last month and
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heard three big companies (Shopzilla, Edmunds, and Google Pi-
casaWeb) get up and say they had regressed in their web site
performance because they weren’'t tracking latency. I realized
that most companies aren’t even at the point where they have
good metrics. 1 think the first idea—Google Analytics for la-
tency—is the best idea. [...] It would be great if this lived on
Google AppEngine. Users could take the code and spin up their
own instance—for free! You could also host a shared instance. I
will say that the work [...]| on AppEngine has been hard because
of the datastore—my officemate does the programming and it is
taken him months to do what I did in a few days on the LAMP
stack.

He agrees on the necessity for such an application and immediately proposes
to make it run on Google AppEngine [24], which is a free platform for web
applications with its own, apparently complicated, datastore that is schema-
less. The idea is that anybody can create a free AppEngine account, install
this application and get a Continuous Profiling application for free!

Whether it would run or Google AppEngine or not, it is certain that an
open source Continuous page loading performance profiling would be very
valuable, which is exactly what I'll try to build for my master thesis.

1.2 Context

Ever since Steve Souders’ High Performance Web Sites book [4], interest
in making web sites load faster has been increasing. More and more big
companies with a strong web presence are paying attention to page loading
performance: the well-known ones such as Microsoft, Yahoo, Google, but also
big companies that are not technology companies such as Amazon, White
Pages, Shopzilla, Edmunds, Netflix ...

Page Loading Profiling Tools

As a result of this trend, a large number of advanced page loading profiling
tools are being developed:

e Deep tracing of the internals of Internet Explorer, by using dynaTrace
Ajax [12]



e JavaScript memory heap profiler and sample-based CPU profiler in
WebKit/Google Chrome [13]

e Firefox has been leading the way with the development of the Firebug
extension and the Yahoo! YSlow [14] & Google Page Speed [15] Firebug
plug-ins

Proposals

Recent proposals (in the last three months of 2009 alone) for web performance
optimization include:

e SPDY [16], a new application-level protocol that learns from the mis-
takes of HTTP (which is ten years old). This protocol specification is
currently in draft state, but tests of the researchers (at Google) show
that pages of the top 25 web sites loaded up to 55% faster.

e Resource Packages [17, 18]. A resource package is a zip file that bundles
multiple resources into a single file and therefor requires only a single
HTTP response and avoids multiple round trip delays. Browsers typ-
ically only take advantage of about 30% of their bandwidth capacity
because of the overhead of HT'TP and TCP and the various blocking
behaviors in browsers. This proposal would result in less bandwidth be-
ing consumed by overhead. Plus, it is backwards compatible: browsers
that don’t support it load the page the same way as today.

e Web Timing [19]. This is a proposal presented to the W3C and wel-
comes feedback from browser vendors. It effectively means that Episodes
is being moved into the actual browser partially, to get rid of the latency
of loading Episodes’” JavaScript and the relatively inaccurate time mea-
surements of JavaScript. It would also allow us to get a complete pic-
ture of the end-to-end latency, which is impossible to do with Episodes
(which can only rely on what JavaScript can do). This proposal is only
a working draft and requires interacting with browser vendors to ensure
all current major browsers will implement this. Even in the best case
scenario, it will take years until the majority of the installed browsers
will support this. Until then, we will be limited in what we can mea-
sure. Hence this proposal should move forward as fast as possible.

All of these would strongly affect browser implementations, which indicates
the willingness and likeliness to change the way data is transferred over the
internet to make web sites load faster.



Search Engine Ranking

The importance of web performance is lifted to an even higher level by the
fact that Google is now using the page loading performance (they call it
“page speed” or “site speed”) of a web page to calculate its ranking.

They announced that they would likely let page speed influence the ranking
of web pages in December 2009 [20] and activated it in April 2010. This
effectively means that all companies whom have been paying for SEO (search
engine optimization) will also have to consider web performance optimization.

1.3 Conclusion

Given the aforementioned context, it is clear that the importance of web
performance optimization is only growing. And as it grows, the need for
tools that can assist developers in making the right decisions of course also
grows. Because new performance issues may occur at any point of time, there
is a need for continuous profiling.

That’s why it is my goal to build a tool that can be used for continuous
profiling that, if well-written, can become a very useful tool in the day-to-
day life of the web developer, to help keep the web developer’s live web sites
loading fast. It could make a real difference, and that is what I'm aiming for.



2 Justification of Literature Study Subjects

Episodes Log Mining

For Episodes log mining, (see the next section), I have used web usage mining
as a basis. However, it was clear that this would be too “applied” to qualify
as a true member of this literature study. Hence it was decided to postpone
the full details to part two of this thesis.

Data Stream Mining

The main task of this thesis consists of mining patterns in the Episodes log
file. However, this Episodes log file is continuously being updated: new log
entries are appended as pages are being viewed on the web site. So we are in
fact not dealing with a static data set that occasionally receives a batch of
new log entries: we are dealing with a data stream! Therefore, data stream
mining is precisely what is needed; more specifically: frequent pattern stream
mining, because from there it is a simple step to association rules, which are
exactly what we need. This is discussed in section 4.

Anomaly Detection

Data stream mining can only find frequently occuring patterns, because that
is exactly what frequent pattern mining is about. However, we also want to
be able to detect occasional spikes instead of just the persistent problems.
For example, spikes may occur only on the first day of the month (because
people can enter the monthly contest on that day), which the web server
may not be able to cope with properly. Detecting these infrequent problems
is exactly what anomaly detection is for. Anomaly detection is discussed in
section 5.

OLAP

OLAP (see section 6), and more specifically the data cube, is necessary to be
able to quickly answer queries about multidimensional data. The data that
needs to be presented to the user (and browsed, queried, interacted with) in
the context of web performance optimization is very multidimensional, as is
explained in section 3.2.



3 Episodes Log Mining

3.1 Introduction
3.1.1 Web Usage Mining

Episodes log mining is a specialized form of web usage mining, which in turn
is a type of web mining. But what is web mining? According to [27]:

Web mining aims to discover useful information or
knowledge from the web hyperlink structure, page content and
usage data. Although web mining uses many data mining tech-
niques, it is not purely an application of traditional data
mining due to the hetereogeneity and semi-structured or
unstructured nature of the web data. Many new mining
tasks and algorithms were invented in the past decade. Based on
the primary kinds of data used in the mining process, web mining
tasks can be categorized into three types: web structure mining,
web content mining and web usage mining.

The web mining process is similar to the traditional data mining process,
however, there usually is a difference in the data collection step. In tradi-
tional data mining, the data is often already collected (and stored in a data
warehouse). In the cases of web structure mining and web content mining,
collecting data can be a large and daunting undertaking. Fortunately, in the
case of web usage mining, it is fairly simple: most web servers keep log files
already (e.g. Apache server logs).

And as indicated at the beginning of this section, it is only web usage mining
that we need, the other types of web mining are irrelevant for this thesis.

Again according to [27], web usage mining is:

Web usage mining refers to the automatic discovery and
analysis of patterns in clickstream and associated data colected
or generated as a result of user interactions with web resources
on one or more web sites. The goal is to capture, model and
analyze the behavioral patterns and profiles of users inter-
acting with a web site. The discovered patterns are usually
represented as collections of pages, objects, or resources that
are frequently accessed by groups of users with common
needs or interests.



3.1.2 Web Usage Mining Versus Episodes Log Mining

However, in the context of web performance optimization analytics (which
is what this thesis is about), typical web server logs are not sufficient: they
only capture which resources were requested by user agents and some meta-
data (date and time, IP address, referrer, etc.). That is by itself not enough
information on how the actual page loading performance of the browser as
perceived by the end user was. It only provides sufficient information for
other kinds of analysis, such as typical navigation paths, popular pages, and
SO on.

While that is interesting in itself and can be useful for suggesting advanced
page loading performance improvements, it doesn’t provide enough informa-
tion to be able to perform page loading performance analysis.

That is why Episodes was developed. As explained earlier, Episodes records
the durations of the various episodes during the loading of the page and when
the page has finished loading, it sends this information to a web server log.
It does this by means of a specially formatted URL—the URL contains the
names and durations of the recorded episodes (in order of being recorded and
occurrence) as a single long GET parameter. This GET parameter can then
be parsed to easily extract the episodes that were recorded.

The additional information that is virtually always included in web server log
files, such as IP address, date and time and user agent can then be used to
apply web performance optimization analysis: IP addresses can be mapped
to locations/ISPs to pinpoint bad performance to a specific location/ISP,
date and time can be used to detect bad performance during specific times
during the day (indicating overloaded web or application servers) and finally
the browser and operating system can be used to detect performance issues
with a specific browser, possibly a specific version of that browser and even
on a specific operating system.

And, of course, any web performance issues that are a combination of the
above can also be detected: web performance problems that only occur for
a specific browser /ISP combination, for example (which might be caused by
a badly configured web proxy server for example).

Examples

Examples of web performance issues that need to be detected automatically
are, for example:

10



e http://example.com/ is slow in Belgium, for users of the ISP
Telenet

e http://example.com/path and all pages in this directory have slowly
loading CSS

e http://example.com/path/b has slowly loading JS for visitors that
use the browser Internet Explorer 6 or 7

The Definition of ’Slow’

Of course, “slow” is a subjective quality. There are many possible methods
for defining “slow”. Here are two examples (both of which T would like to
support in the implementation that will accompany this thesis):

1. The top x percent slowest episodes are considered “slow”. x would be
configurable by the user.

2. There is a threshold y defined for each episode; durations for this
episode higher than y would be marked slow.

Analogously, one could define multiple “speeds”: very slow, slow, acceptable,
fast, very fast, for example. This would need to come with sane defaults, but
should be configurable by the user in the end.

Note that in the first example definition for “slow”, the threshold for a “slow”
episode constantly changes, as new episodes are being added. This can be
worked around by using data stream mining, as opposed to “regular” data
mining (see section 4).

3.1.3 The Mining Process

The overall web usage mining process (and therefore Episodes log mining,
which is merely a specialization) can be seen as a three-stage process. Below
I have provided a high-level comparison of the differences between web usage
mining and Episodes log mining.

1. data collection and pre-processing

e Web usage mining: this would consist of partitioning the log en-
tries into a set of user transactions. In pre-processing, knowledge

11



about the site content or structure, or semantic domain knowledge
(from the used ontologies) may be used to enhance the transaction
data.

e Episodes log mining: here, it is quite different: data collection is
not an issue; and pre-processing consists of mapping the IP ad-
dress of each log entry to a location and an ISP (if possible), ex-
tracting the various episodes from the specially formatted URL,
normalizing the user agent string, and so on.

The data collection has already been implemented in [1] (as already
indicated in section ??). The pre-processing will be implemented
as part of this master thesis.

2. pattern discovery

e Web usage mining: find hidden patterns reflecting typical behav-
ior of users and generate summary statistics on components, ses-
sions and users.

e Episodes log mining: find hidden patterns related to web perfor-
mance and summary statistics such as average page loading time
per country or browser.

The discovery of these patterns will be implemented as part of this
master thesis. For this, data stream mining—see section 4—and
anomaly detection—see section 5—will be used.

3. pattern analysis

e Web usage mining: the discovered patterns and statistics are fur-
ther processed, filtered, and then used in recommendation engines,
visualization tools or analytics/report generation tools.

e Episodes log mining: the discovered patterns and statistics are dis-
played in a tool that provides visualizations and automatically
makes suggestions as how to solve automatically detected web
performance issues.

This visualization tool will be implemented as part of this master
thesis. For this, OLAP will be used—see section 6.

Simultaneously, this overview of course also gives a high-level idea of what
the implementation that will accompany this thesis will entail.

12



3.2 The Attributes

As explained before, essentially the goal of this thesis is analyzing Episodes
log files. Each log entry is stored in a format which has been optimized to
store only the information that ever might be useful for Episodes log mining
instead of regular web usage mining. The format is as follows:

211.138.37.206 [Sunday, 21-Jun-2009 06:23:37
+0200] "7ets=css:63,headerjs:4453,footerjs:16,
domready: 7359, tabs:31,
ToThePointShowHideChangelog:0,gaTrackerAttach
:16 ,DrupalBehaviors :47,frontend :8015" 200 "http
:// driverpacks.net/applications" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1; (R1

1.6); .NET CLR 2.0.50727)" "driverpacks.net"

Each such log entry (of which there is one for each pageview!) can be trans-
formed into a long list of categorical attributes: IP address, location (by
mapping the IP address to a location), date, episode names, browser, op-
erating system, and so on. There also is an important list of numerical
attributes: the episode durations.

Episodes log mining in general and these attributes in specific of course need
more explaining, but it cannot be considered literature study, since it only
requires a very “applied” text to be meaningful. General web usage mining is
irrelevant to this thesis, since that is mostly about finding patterns in visitor’s
activities, which is something we don’t care about from a web performance
optimization perspective.

Therefore, these additional explanations will be added in part two of this
thesis.
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4 Data Stream Mining

This section is based mostly on [41, 46], at least for the introduction and
general information about the various methodologies. The details about the
various algorithms originates from their corresponding original (or related)
papers.

To achieve this, we must dive deeper into the field of data stream mining.
The goals are the same as for data mining, but the difference is that we do
not operate on a fixed set of data, but on a stream of incoming data, that
is generated continuously, and with varying update rates. Data streams are
temporally ordered, fast changing, massive, and potentially infinite. Because
not all data is known before starting the mining process, and because the
size of the (stream of) data is potentially infinite, this implies that we can
no longer use algorithms that require multiple scans: instead, it is necessary
to use single-scan algorithms (it may even be impossible to store the entire
data stream).

Even for non-stream data this may be necessary: if the dataset is so enor-
mous that it is not feasible to perform multiple scans (e.g. when one needs
to perform Episodes log mining on months worth of Episodes logs), then
algorithms developed for data streams are equally applicable.

4.1 Methodologies for Stream Data Processing

As discussed before, it is impractical (or even unrealistic) to scan through an
entire data stream multiple times—sometimes it even might be impossible
to evaluate every element of the stream due to the update rate. The size of
the data is not the only problem: the universes! that need to be tracked can
be very large as well (e.g. the universe of all IP addresses is enormous).

Clearly, new data structures, techniques and algorithms are needed for effec-
tive processing of stream data. Because it is impossible to store all stream
data (which would require an infinite amount of storage space), it is often
necessary to consider a trade-off: accuracy versus storage. In other words:
approximate instead of exact answers are often sufficiently accurate.

Synopses can be used to calculate approximate answers, by providing sum-
maries of data: they use synopsis data structures, which are data structures
that are significantly smaller than their base data set (here: stream data).
We want our algorithms to be efficient both in space and time. Instead of

LA universe is the domain of possible values for an attribute.
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storing all elements seen so far (requires O(N) space), it is more desirable to
only use polylogarithmic space (O(log® N) ).

The synopses below are explained succinctly, either because they're fairly
easy to comprehend or because explaining them in-depth would lead us too
far.

4.1.1 Random Sampling

Rather than storing (and processing) the entire data stream, another option
is to sample the stream at periodic intervals. However, to obtain an unbiased
sampling of the data, it is necessary to know the length of the stream in
advance, to determine the periodic interval. But for many data streams it is
impossible to know the length, or indeed it will be infinite. Hence another
approach is necessary.

An alternative method is reservoir sampling: it achieves an unbiased sample
by selecting s elements randomly and without replacement. In reservoir sam-
pling, a sample of size at least s is maintained, which is called the reservoir.
From this reservoir, a random sample of size s can be generated. To avoid
the cost of generating a sample from the possibly large reservoir, a set of
s candidates in the reservoir is maintained. These candidates form a true
random sample of the elements seen so far in the stream.

As new data flows in from the data stream, every new element in the stream
can replace a random old element in the reservoir with the probability <.

4.1.2 Sliding Windows

Instead of working with all data ever flown in through the data stream, we
make decisions based only on recent data. More formally: the element that
arrives at time t expires at time ¢ + w, with w the window size.

4.1.3 Histograms

A histogram is a synopsis data structure, which can be used to approximate
the frequency distribution of element values in a a stream. It partitions the
data into a set of contiguous buckets. Various partition rules are possible,
among which equal-width (equal value range for all buckets) and V-Optimal
(minimizes the frequency variance within each bucket, which better captures
the distribution of the data).
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However, histograms require at least two passes: at least one to decide the
size of the buckets and then another to associate each value with a bucket.
This makes histograms unsuitable for use with data streams.

4.1.4 Multiresolution Methods

A multiresolution method is an example of a data reduction method—a data
reduction method can be used to achieve smaller data storage requirements,
yet closely maintain the integrity of the original data.

Multiresolution methods also offer, on top of the aforementioned, the abil-
ity to look at the data stream in multiple levels of detail, which may be a
desirable property when processing a data stream.

We look at one example of a multiresolution data reduction method: wavelets.

Wavelets

Wavelets are a technique from the field of signal processing, but can also be
used to build a multiresolution hierarchy over a signal, which would be the
data stream in our case. Wavelets coefficients are projections of the given
signal (again, the data stream in our case) onto an orthogonal set of basis
vector. Which wavelets can be used depends on the choice of basis vectors.
Using the Haar wavelet (often chosen for their ease of computation) for exam-
ple, we can recursively perform averaging and differencing at multiple levels
of resolution.

An example of the one-dimensional Haar wavelet should clarify this. Let
A be a one-dimensional data vector, with A = [22,14,16,12]. We now first
average each pair of values to get a new data vector with a “lower resolution”:
A = [ 12T = 118 14]. Clearly we cannot generate A from A’: not
enough information is available. To be able to restore the original values,
we need to store the detail coefficients, which capture the information that
has been lost. For Haar wavelets, these are simply the differences of the
second original value with the averaged value, in our example that would be:
18 — 14 = 4 and 14 — 12 = 2. Note that it now is possible to restore the
original four values. If we now apply this process of averaging and differencing

recursively, we get the following full decomposition:

’ Resolution \ Averages \ Detail coefficients ‘
2 22,14, 16, 12] n/a
1 [18, 14] [4,2]
0 [16] 2]
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The wavelet transform of A (or wavelet decomposition) is defined to be the
single coefficient representing the overall average of the values in A, followed
by the detail coefficients in the order of increasing resolution. Thus, the Haar
wavelet transform of A is Wy = [16,2,4,2]. Each entry in W, is called a
wavelet coefficient.

We can then achieve a more compact data representation by either only in-
cluding the lower resolution detail coefficients or by applying compression
techniques such as run-length encoding (run-length encoding [51] can be
applied because the information is statistically concentrated in just a few
coefficients).

Wavelets have been used as approximations to histograms for query opti-
mizations [42].

Unfortunately, wavelets also require multiple passes, rendering them too un-
suitable for use with data streams.

4.1.5 Sketches

The aforementioned techniques either focus on a small partition of the data
(sampling & sliding windows) or summarize the entire data (histograms),
possibly at multiple resolutions (wavelets).

A histogram requires multiple passes and stores only a single resolution. A
wavelet is an approximation of a histogram also requires multiple passes but
can store multiple resolutions. Next in that row is a sketch: it can maintain
an approximation of a full histogram in a single pass, and if desired can be
used to store multiple resolutions.

A sketch can be used to maintain the full histogram over the universe of
elements in a data stream in a single pass. Define the universe as U =
{1,2,...,v} (with v the universe size) and the elements in the data stream
as A = {ay,a9,...,an} (with possibly N = 00). For each value i in the
universe, we want to maintain the frequency of 7 in the sequence of elements
A. If the universe is large, the required amount of storage can be large as
well. To achieve a smaller representation, we consider the frequency moments
of A. These are the numbers Fj,:

v

i=1

where m; is the frequency of 7 in the sequence and k£ > 0.
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This can be interpreted as follows. Each example result is calculated over
the sequence 131113342.

e [7 is the number of distinct elements in the sequence, i.e.: 0 < Fy < v.
Applied to the example: Fy = 4.

e F} is the length of the sequence, i.e.: F; = N.
Applied to the example: Fy =44+1+3+1=09.

e I is the so-called self-join size?, or also known as repeat rate or Gini’s
index of homogeneity.
Applied to the example: [, = 4% + 12 432 412 = 27.

The frequency moments of a data stream (or any data set of fixed size)
provide useful information about this data for database applications, one
of which is the skew (or asymmetry) of the data. The skew can be used
to decide how to partition the data set for parallel or distributed database
systems.

When the amount of available memory is smaller than v (the universe size),
we need to employ a synopsis. The estimation of the frequency moments can
be performed by sketches, which build a summary (requiring less space) for
a distribution vector (e.g. a histogram) using randomized linear projections
(i.e. linear hash functions) of the data they are fed (i.e. the data stream).
Sketches provide probabilistic guarantees on the quality of the approximate
answer. For example: the answer to the given query is 93+1 with a 95%
probability. Given N elements and a universe U of v values, such sketches
can approximate Fy, Fy and Fy in O(logv + log N) space [43].

The most complex and interesting sketch is the one for approximating F5,
thus only that one will be explained more in-depth here.

The key idea behind the Fy sketching technique is as follows: every element 4
in the domain D is hashed uniformly at random onto a value z; € {—1,+1}.
Define the random variable X =", m;z; and return X* as the estimator of
F5. Clearly, this estimator can be calculated in a single pass. Note that we
do not actually calculate m; in the formula for X: each time we encounter 7,
we just update X by adding another iteration of m;z; (which is why it can
work in a single pass). Hashing can be used because the actual value of each
7 is irrelevant: we only want to know the frequency.

To explain why this works, we can think of hashing elements to either —1

2The self-join size I, is also used to estimate the join size for RDBMSes in limited
space, see [47].
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or +1 as assigning each element value to an arbitrary side of a tug of war.
When we sum up to get X, we can think of measuring the displacement of
the rope from the center point. By squaring X, we square this displacement,
thereby capturing the data skew F.

The sketching technique to compute Fy was presented in [70] (which is refer-
enced again in section 6.7.2), however, this required explicit families of hash
functions with very strong independence properties. In [43], this require-
ment was relaxed; it explains how Fy, F; and F, can be approximated in
logarithmic space by using linear hash functions (which is why sketches hold
an advantage over wavelets in terms of storage). A single pass algorithm for
calculating the k-th frequency moment of a data stream for any real k& > 2
is given in [44], with an update time of O(1). Finally, in [45], a simpler algo-
rithm (but with the same properties) is given. Another interesting sketching
method is given in [52].

4.1.6 Randomized Algorithms

Random sampling and sketching are examples of randomized algorithms.

Randomized algorithms that always return the correct answer but whose
running times vary are known as Las Vegas algorithms. In contrast, there
are also randomized algorithms that are bounded on running time but may
not return the correct answer; these are called Monte Carlo algorithms.

In the context of data stream mining, where the time to process incoming
data is obviously limited, we consider mainly Monte Carlo algorithms. A
randomized algorithm can be thought of as simply a probability distribution
over a set of deterministic algorithms.
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4.2 Frequent Item Mining

A typical goal in data mining is pattern mining, from which it is easy to
generate association rules. Association rules describe correlations between
items, such as “people who buy both milk and beer also tend to buy diapers
with 70% probability”. To find meaningful patterns, it is necessary to find
which itemsets occur frequently in a dataset, where an itemset is considered
frequent if its count satisfies a minimum support.

Fast algorithms for mining frequent itemsets have been developed for static
data sets, such as Apriori and FP-growth. However, mining itemsets in dy-
namic data sets (i.e. data streams) creates a whole new set of challenges.
Existing algorithms such as Apriori [60] and FP-growth [61] (and many oth-
ers) depend on the ability to scan the entire data set (which may impossible
for data streams, since they might be infinite), and typically require multi-
ple passes. So how can we perform incremental updates of frequent itemsets,
while an infrequent itemset can become frequent at a later point in the data
stream, and vice versa? The number of infrequent itemsets also is expo-
nential, which makes it impossible to track all of them®. Thus, a synopsis
data structure (as explained in section 4.1) is obviously needed, or more
accurately: an algorithm that builds such a data structure.

There are two possible approaches to overcome this difficulty:

1. Only keep track of a predefined, limited set of item(set)s. This method
of course has very limited usage, because it will be unable to find fre-
quent item(set)s beyond the predefined scope.

2. Derive an approzimate answer—while this won’t be 100% correct, it is
often sufficient in practice.

Now, an itemset of course consists of items. Hence we will focus in frequent
item mining algorithms in this section and then look into frequent itemset
mining algorithms in the next. Note that by frequent item counting, we are
actually referring to highly frequent item counting. In the field of network
traffic flows, the problem of finding the largest traffic flows is also known as
the heavy hitter problem [56], so frequent item mining algorithms are some-
times also called heavy hitter algorithms.

All algorithms in this section and the next provide approzimate answers.

31t has been shown [48] that it is impossible to find the exact frequency of frequent
items using an amount of memory resources that is sublinear to the number of distinct
elements.
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4.2.1 Window Models

A data stream consist of elements, i.e. item(set)s, which arrive in a particular
order over time. There are several ways one can deal with this sequence
nature, existing models are [58]:

1. The landmark model: frequent item(set)s are mined in data streams by

assuming the item(set)s are measured from the beginning of the stream
until the current moment.
This model may not be desirable when changes of patterns (itemsets)
and their trends are more interesting than the patterns themselves.
E.g. a series of shopping transactions could start a long time ago (e.g.
a few years ago), but patterns found over the entire time span may be
uninteresting due to fashion, seasonal changes, and so on.

2. The sliding window model: frequent item(set)s are mined over only the
last w transactions, with w the window size.

3. The tilted-time window model: frequent item(set)s are mined over the
last w transactions, but only the most recent frequent item(set)s are
stored at fine granularity—frequent item(set)s in the past are stored at
coarser granularity.

4. The damped window model: a decay function is applied to the data
stream, to give more weight to recent data than to old data.

If this wasn’t clear yet: this classification is both applicable to both single
items (which is discussed in this section) and itemsets (discussed in section
4.3).

All frequent item mining algorithms in the remainder of this section are of the
landmark window model, the window model for the frequent itemset mining
algorithms in section 4.3 vary and are indicated on a per-algorithm basis.

Tilted-Time Window

The tilted-time window model needs a little bit more explaining.

The design of the tilted-time window is based on the fact that often the
details of recent changes are interesting, but over a longer period, less detail
1S Necessary.

Several ways exist to designed a tilted-time window. Here are two common
examples:
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Figure 3: Natural tiled-time window.
(Figure courtesy of [58].)

1. Natural tilted-time window model. [41, 58] The time window is struc-

tured in multiple granularities, based on the “natural” (for humans)
time scale: the most recent 4 quarters of an hour, then the last 24
hours, 31 days and then 12 months. This can of course vary, depend-
ing on the application. See figure 3 for an example of what that looks
like.
Based on this model, we can compute frequent itemsets in the last hour
with the precision of a quarter of an hour, the last day with the precision
of an hour, and so on. This model registers only 4 +24 +31 +12 =71
units of time (quarters, hours, days, months respectively) instead of
365 X 24 x 4 = 35,040 units of time—with the trade-off of coarser
granularity for the distant past.

2. Logarithmic tilted-time window model. [41] In this model, the granular-
ity decreases towards the past at an exponential rate. If the most recent
slot holds data for the last quarter, then the one before that also holds
data for one quarter (the one before the most recent), then for 2 quar-
ters, 4, 8, 16, and so on. In this model, only [log, (365 x 24 x 4) 4+ 1] =
[16.1] = 17 units of time are needed.

4.2.2 Algorithm Classification

Currently known frequent item mining algorithms all rely on one of three
basic techniques [50, 55]:

e Counting: lossy counting (4.2.7), Karp/Demaine algorithm [59], proba-
bilistic lossy counting (4.2.9). In general, they use 1) a fixed or bounded
number of counters for tracking the size of frequent elements and 2) a
condition to periodically delete or reallocate counters of infrequent el-
ments.

Counting algorithms have low per-element overhead, as they only re-
quire incrementing a counter, along with a potentially high periodic
housekeeping step that may sort and delete counters.
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e Hashing: count sketch (4.2.8), min-count sketch. They all use variants
of the same data structure, which most of them call a sketch, which is
a one- or two-dimensional array of hash buckets.
Hashing algorithms use fixed memory resources to estimate the fre-
quency of an arbitrary element of a data stream and provide proba-
bilistic guarantees on the estimation errors.

e Sampling: basic sampling (4.2.3), concise sampling (4.2.4), counting
sampling (4.2.5), sticky sampling (4.2.6).
Sampling algorithms reduce the required memory resources and the
processing overhead for identifying frequent items. The downside is
that they typically have a lower estimation accuracy.

The algorithms are explained in the next subsections, in order of being pub-
lished—with the additional goal of providing an (approximation of) the time-
line over which new, improved algorithms have been invented.

By including the older algorithms upon which the newer ones are based, it
also becomes more clear how we ended up with the current state-of-the-art
algorithms.

4.2.3 Basic Sampling

Note that this algorithm is the most basic sampling algorithm [55] and that
other algorithms such as concise sampling (see section 4.2.4), count sampling
(see section 4.2.5) and sticky sampling (see section 4.2.6) build upon it. It
requires the size of the data set to be known in advance, which renders it
useless for use with data streams. It is only listed here fore reference.

This algorithm is the most straightforward solution for counting item fre-
quencies: it keeps a uniform random sample of the elements, stored as a
list £ of items, with a counter for each item. If the same element is added
multiple times, its counter is incremented (the element is not added multiple
times to L).

If x is the size of the sample (counting repetitions) and N the size of the
data set, then the probability of being included in the sample is ;, the count
of the k' most frequent element is denoted ny (iie. ny >mg > ... >ny >

. > ny,) and let f; = %, To guarantee that all top k elements will be in

T N N
the sample, we need 5 > O(log ;-), thus = > O(log ).
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4.2.4 Concise Sampling

This is a variant of the basic sampling algorithm given in section 4.2.3. In-
troduced by P. B. Gibbons and Y. Matias in 1998 [49], the concise sampling
algorithm keeps a uniformly random sample of the data, but does not assume
that the length of the data set is known beforehand (which the general sam-
pling algorithm of section 4.2.3 does assume), hence making this algorithm
suitable for use with data streams.

Again a list of items with a counter for each item is kept, i.e. a list £ of (e, ¢)
pairs with e the element and c its count.

It begins optimistically, assuming that we can include elements in the sample
with probability %, with threshold » = 1. As it runs out of space, the
threshold r is increased to 7’ repeatedly; until some element is deleted from
the sample: each of the sample points in £ is evicted with probability . We
then continue with this new, higher r'.

The invariant of the algorithm is that at any point, each item is in the sample
with the current probability % At the end of the algorithm (i.e. the end of

the data stream, if there is an4end), there is some final probability %

No clean theoretical bound for this algorithm is available: it can only be
calculated for specific distributions. E.g. for exponential distributions, the
advantage is exponential: this means that the sample size is exponentially
larger than the memory footprint for this sample size.

Note: the reader familiar with data compression techniques may have aptly
noted that this is indeed very similar to the simple, yet widely utilized run-
length encoding technique [51]!

4.2.5 Counting Sampling

Counting sampling is merely a small optimization to concise sampling (and
is discussed in the same paper by P. B. Gibbons and Y. Matias from 1998
[49]); it is based on the simple observation that so long as space is set aside
for a count of an item in the sample anyway, we may as well keep an exact
count for the occurrences.

This change improves the accuracy of the counts of items, but does not
change which elements will actually get included in the sample.

Since this is only an optimization and the essence of the concise sampling
remains untouched, no clean theoretical bound on the space complexity of
this algorithm exists either.
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4.2.6 Sticky Sampling

The sticky sampling algorithm is an enhanced version of the counting sam-
pling algorithm. The difference is that in sticky sampling, the sampling rate r
increases logarithmically, proportional to the size of the stream. Additionally,
it guarantees to produce all items whose frequency exceed a user-specified
minimum support parameter s, instead of just the top k. The user can also
specify an acceptable error margin € € [0, 1] and an acceptable probability of
failure 0 € [0, 1] to meet this error margin.

It was presented in 2002 by G. S. Manku and R. Motwani [53].

Guarantees
A very clear set of guarantees is given for this algorithm:

1. All items whose true frequency exceeds sN are output. There are no
false negatives.

2. No items whose true frequency is less than (s — ¢) N are output.

3. Estimated frequencies are less than the true frequencies by at most eN
with probability 1 — §.

We say that the algorithm maintains an e-deficient synopsis if its output
satisfies these guarantees.

Guarantees Example

For example, if the goal is to identify all items whose frequency is at least 1%,
then s = 1%. The user is allowed to set the error margin € to whatever value is
considered acceptable. Let’s assume a 5% margin of error is acceptable, then
e = 0.05% = 5% x s. Then, as per guarantee 1, all elements with frequency
exceeding s = 1% will be output, and there will be no false negatives. As per
guarantee 2, no element with frequency below 0.95% will be output. This
leaves elements with frequencies between 0.95% and 1%. These might or
might not form part of the output. Those that make their way to the output
are false positives. Further, still as per guarantee 3, all individual frequencies
are less than their true frequencies by at most 0.05%.

The approximation in this algorithm has two kinds of errors: 1) false positives
still have high frequencies, 2) individual frequencies have small errors. Both
kinds of errors are tolerable in the context of frequent item mining.
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Algorithm

The algorithm wn se is the same as the one for concise sampling, with a dif-
ferent method for changing the sampling rate r: it increases logarithmically.
Formally: let t = %log(s_1(5‘1). The first 2t elements are sampled at r = 1,
the next 2t elements are sampled at rate r = 2, the next 4t at r = 4, and so
on.

Whenever the sample rate changes, we also scan L’s entries and update them
as follows: for each entry (e, ¢), we repeatedly toss an unbiased coin until the
coin toss is successful, diminishing ¢ by one for every unsuccessful outcome.
If ¢ becomes 0 during this process, we delete the entry from £. The number
of unsuccessful coin tosses follows a geometric distribution, which can be
efficiently computed [54].

Effectively, this will have transformed £ to the state it would have been in
if we had been sampling with the new rate from the start.

When a user requests a list of items with threshold s, we output the entries
in £ where ¢ > (s — ¢)N. One can prove that the true supports of these
frequent items are underestimated by at most € with probability 1 — 9.

Space

Its name is derived from the analogy with a magnet: £ sweeps over the data
stream like a magnet, attracting all elements which already have an entry
in £. Note that the space complexity of sticky sampling is independent of
N: the space requirements are 2t as said before, t is known, thus the space
bound is O(2log(s~'0~*). Consult [53] for the proof.

4.2.7 Lossy Counting

This is the first algorithm in our list that is deterministic instead of proba-
bilistic. It was presented in the same paper that introduced sticky sampling,
by G.S. Manku and R. Motwani, in 2002 [53]. It uses at most log(eN)
space, where N denotes the length of the stream so far—contrary to the
sticky sampling algorithm described in the previous section, this algorithm is
not independent of N. This algorithm performs better than sticky sampling
in practice, although in theory, it is worst-case space complexity is worse.

26



Guarantees

A very clear set of guarantees is given for this algorithm:

1. All items whose true frequency exceeds sN are output. There are no
false negatives.

2. No items whose true frequency is less than (s — €) N are output.

3. Estimated frequencies are less than the true frequencies by at most eN.

We say that the algorithm maintains an e-deficient synopsis if its output
satisfies these guarantees.

Note that guarantee 3, unlike the third guarantee for 4.2.6, does not have a
failure probability.

Guarantees Example

The same guarantees example as for sticky sampling applies to lossy counting.

Definitions

The incoming stream is conceptually divided into buckets of width w = E]
transactions each. Buckets are labeled with bucket ids, starting from 1. The
current bucket id is denoted by beyrrent, Whose value is (%L with N again
the length of the data stream so far. For an element e, we denote its true
frequency in the stream so far by f,.

Note that € and w are fixed while N, b.yrrent and f. are variables whose values
change as the stream flows in.

Our data structure D is a set of entries of the form (e, f, A), where e is an
element in the stream, f is an integer representing the estimated frequency
of e, and A is the maximum possible error in f.

In this algorithm, the stream is divided into buckets, but in other algorithms
they are typically called windows: in the context of this algorithm, they are
equivalent concepts.

27



Algorithm

Initially, D is empty.

Whenever a new element e arrives, we first scan D to check if an entry for
e already exists or not. If an entry is found, we update it by increment-
ing its frequency f by one. Otherwise, we create a new entry of the form
(€, 1, beyrrent — 1). Why the value for A is being set to beyprent — 1 Will be
explained later on.

So far, the frequency counts hold the actual frequencies rather than approx-
imations. They will become approximations because of the next step.

We also prune D by deleting some of its entries at bucket boundaries, i.e.:
whenever N = 0 mod w. In other words: we prune D when the next bucket
in the stream begins. The rule for deletion is simple: an entry (e, f, A) is
deleted if f+ A < beyrrent- In other words: elements with a small frequency
are deleted; or more accurately: e is deleted if it occurs at most once per
bucket on average.

Because of this step, the frequency counts now contain approximations of the
actual frequencies. Note that these approximations will always be underes-
timations.

At any point of time, the algorithm can be asked to produce a list of items,
along with their estimated frequencies. When such a request is made by the
user, we output those entries in D where f > (s —¢)N. This condition guar-
antees that all items whose true frequency exceeds sIN are output, but allows
for some false positives to leak through, although they have a frequency that
is almost high enough to qualify as truly frequent.

Insight in How the Algorithm Works

For an entry (e, f,A), f represents the exact frequency count of e ever since
this entry was last inserted into D. The value of A assigned to a new entry is
the mazximum number of times e could have occurred in the first beyrrens — 1
buckets. This value is exactly beyrrent — 1, because otherwise e would not
have been deleted. Once an entry is inserted into D, its A value remains
unchanged.

Upon insertion, A is being set to beyrrens — 1, which is the maximum number
of times e could have occurred in the first b.,,rent — 1 buckets, but was deleted
at some point in the past because its maximum frequency (f + A) was not
sufficiently high (f + A % beyrrent).- Therefore, the average frequency of e
over the past buckets must have been less than 1: —f=— < 1.

bcumﬂent
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We can deduct this minimum average occurrence from the fact that the
deletion rule is f 4+ A < beyrrent: this is not satisfied as soon as the f is
incremented by at least one for every observed bucket. This effectively means
that this algorithm will store all elements which occur more than once per
bucket on average.

Since an element is deleted when f + A < beyrrent, and we know that b <

N — & = ¢N, we can conclude that an item can be underestimated at most

Space

Lossy counting uses at most %log(eN ) entries, where N is again the current
stream length. If elements with very low frequency (at most %) tend to occur
more or less uniformly at random, then lossy counting requires no more than
T space. Proofs can be found in [53].

4.2.8 Count Sketch

Count Sketch is in fact not the name of this algorithm that was published in
2002 [55], but of the data structure it relies on to estimate the most frequent
elements in a data stream in a single pass. A nice side-effect is that this
algorithm leads directly to a two-pass algorithm for estimating the elements
with the largest (absolute) change in frequency between two data streams.

Intuition

We begin from a very simple algorithm and go to the final algorithm on a
step-by-step basis.

Let S = ¢1, ¢, .. .,q, be a data stream, with each ¢; € U = {e1,ea,...,en}
(i.e. m different elements in the universe). If each element e; occurs n; times
in S, then that is so that ny > ny > ... > n,,, i.e. n; is the most frequent
element, n, the second most frequent, and so on.

First, let s be a hash function from elements to {41, —1} and let ¢ be a
counter. As we process the incoming objects of the stream, each time we
encounter an element e;, we update the (single) counter ¢ = ¢ + s(g;). We
can then estimate the i*® most frequent item n; as follows: Elc - s[q]] = n;.
However, the variance of every estimate is obviously very large.
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A natural solution to this problem is to use more counters. l.e. use t hash

functions si,...,s; and maintain ¢ counters cq,...,¢;. Then to process an
element ¢;, we need to update all counters: ¢; = ¢; + s;(¢;), for each j.
Now we have Elc¢; - s;[¢;]] = n;. We can then take the mean or median of

these estimates to achieve a new estimate with a lower variance than in the
previous approach.

However, high frequency elements can spoil the estimates of low frequency
elements, because for each element that is encountered, all counters are up-
dated. Therefore we propose an alternative: we replace each of the t counters
by a hash table of b counters and have all elements update different subsets
of counters, one per hash table (i.e. all ¢ “counter hash tables” are updated,
but only one counter per hash table). This way, every element will get a suf-
ficient amount of high-confidence estimates (since only a few will have large
variance thanks to this randomized counter updating process) and there-
fore all elements can be estimated with sufficient precision. Now we have
Elh;q] - slg]] = ny. Note that by increasing the number of counters per hash
table b to a sufficiently large amount, the variance can be decreased to an
acceptable level and by making the number of hash tables ¢ sufficiently large,
we will make sure that each of the m estimates (i.e. one for every element in
the universe) has the desired variance.

Algorithm

Let hyq,...,hs be hash functions from objects to {1,...,b} and sq,...s; also
be hash functions from objects to {+1, —1}. The CountSketch data structure
consists of these hash functions h; and s;, along with a ¢ x b array of counters,
which should be interpreted as an array of ¢ hash tables that each contain b
buckets. Both ¢ and b are parameters to the algorithm and their values will
be determined later.

Note that the idea of hashing elements onto —1 and +1 for estimation has
already been used and explained before, for approximating the F; frequency
moment—see section 4.1.5.

The data structure supports two operations:

e add(C,q): for i=1 to t do h;[q] += s;[q¢]

e estimate(C, ¢): return median; {h,;[q]l-s;[¢]}

We use the median instead of the mean because the mean is—as is well-
known—very sensitive to outliers, whereas the median is more robust.
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Once this data structure is implemented, the algorithm that belongs with it
is straightforward and simple to implement. The CountSketch data structure
is used to estimate the count each element in the data stream; to keep a heap

of the top k elements seen so far. Formally: given a data stream ¢y, ..., q,,
foreach j =1,...,n:
e add(C,q;)

e If g; is in the heap, increment its count. Else, add ¢; to the heap, but
only if estimate(C', ¢) is greater than the smallest estimated count
in the heap; this smallest estimated count should then be deleted from
the heap, to make room for g;.

The algorithm requires O(tb + k) space. It is also possible to bound ¢ and
b, but that would involve several proofs, thereby leading us too far—consult
[55] for that.

4.2.9 Probabilistic Lossy Counting

One of the most efficient and well-known algorithms for finding frequent items
is lossy counting (see section 4.2.7). In [56], published in 2008, a probabilistic
variant of lossy counting was introduced, with the unsurprising name Proba-
bilistic Lossy Counting (PLC). It uses a tighter error bound on the estimated
frequencies and provides probabilistic rather than deterministic guarantees
on its accuracy.

The probabilistic-based error bound substantially improves the memory con-
sumption of the algorithm: it makes PLC less conservative in removing state
for elements with a low frequency. In data streams with a large amount of
low-frequency elements, this drastically reduces the required memory.

On top of this, PLC also reduces the rate of false positives and still achieves
a low, although slightly higher estimation error.

When they applied PLC to find the largest traffic flows (which in the network
traffic flow context are typically called heavy hitters) show that PLC has
between 34.4% and 74% lower memory consumption and between 37.9% and
40.5% fewer false positives, while maintaining a sufficiently small (but as
already mentioned, slightly higher) estimation error. Note that these tests
were conducted with a very large proportion of small traffic flows (98.9%).
In the original PLC paper, network traffic flows are used to compare PLC
with LC. The researchers want to identify the largest traffic flows, to be able
to identify denial of service (DoS) attacks, to monitor traffic growth trends,
to warn heavy network users, and so on.
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Observations Leading to PLC

Remember, LC uses a data structure D which consists of a set of entries. Each
entry is of the form (e, f, A). Look at 4.2.7 again to refresh your memory if
necessary.

The maximum possible error A associated with each element is used when
determining which elements to remove from D. An entry is deleted if f+A <
bewrrent- Since A is initialized t0 beyrrens — 1 (to adjust for all possible buckets
in which e might have occurred), this maximum possible error A may be
large so that the entry stays in D unnecessarily long. That is, when an entry
for an element stays in D for more buckets, then according to Little’s law
[57], the average size of D increases. Thus, the value of the mazimum possible
error A has a direct impact on the memory consumption of the algorithm.
This is the key observation.

The main improvement of PLC over LC is then to make A substantially
smaller by providing probabilistic guarantees (versus LC’s deterministic error
bound). The probabilistic value for A as generated by PLC guarantees with
a desired probability 1 — § (with § < 1) that the error of the frequency of
an element is smaller than the bound.

In figure 4, the difference in maximum error bound between PLC and LC
is demonstrated for a data stream with a very large proportion (98.9%) of
low-frequency elements. While this may be considered an extreme example,
it still shows the potential for improvement that PLC entails: since there
is a large number of low-frequency elements, the decrease in A that PLC
promises can drastically reduce the size of D.

Guarantees

The user can still specify an acceptable error margin € € [0, 1], but unlike LC
an acceptable probability of failure 6 € [0, 1] to meet this error margin can
be set once again (like sticky sampling, see 4.2.6).

A very clear set of guarantees is given for this algorithm:

1. All items whose true frequency exceeds sN are output. There may be
false negatives, although [56] found that false negatives are unlikely in
practice. The probability of false negatives can be controlled using the
0 parameter.

2. No items whose true frequency is less than (s — ¢) N are output.
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Figure 4: Cumulative error distribution of elements entering D at buckets (or
windows) 400 and 1000, 95-percentile of error distribution, and deterministic
error bound of LC.

Note that the deterministic bound is significantly larger than the 95 per-
centile. The data stream is a trace of network traffic flow.

(“CCDF” in the chart corresponds to 6 and “error” corresponds to A.)
(Figures courtesy of [56].)

3. Estimated frequencies are less than the true frequencies by at most e N
with probability 1 — .

Algorithm

The algorithm is identical to the one of LC. The only exception is the value
of the maximum possible error A. To find this value, [56] assumes that the
data stream’s element frequencies follow a power-law distribution (they don’t
give a solution for non-power-law distributions).

In their case of network flow traffic, they have empirically observed that it
follows a Zipfian distribution. Providing the entire proof would lead us too
far, thus consult [56] for full details.

If Y is a random variable that denotes the true frequency of an element,
then Pr(Y > y) = ay”, where a (a < 1) and 8 are the parameters of the
power-law distribution. Then we end up at:

A = {/5(1 - (bcurrent - 1)’8 + (bcurrent - 1)6
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We still need to calculate 5. With probability 1 — §, the set of entries D
contains all the elements with true frequency larger than b.yprens — 1. The
frequency distribution of these elements is:

Pr(Y >y) B yP

PT(Y > y|Y > bcurrent - 1) = P’I"(Y > bcurrent — ]_) (bcurrent - 1)6

Note that this frequency distribution also follows a power-law with the same
parameter § as the overall frequency distribution of the data stream. Thus,
we can estimate  on-line by fitting a power-law on the frequency distribution
of elements in D with f > beyrrens — 1. This of course has the limitation that
we are using the estimated frequency f instead of the true frequency. In
practice, they found that the estimated frequencies are almost identical to
the true frequencies, with a very small error, thereby introducing a negligible
error.

Space

The worst-case memory bounds for PLC are the same as those for LC. The
average case has the potential to use far less space though, thanks to the
more aggresive pruning step.

Evaluation

PLC exploits data streams that tend to have a lot of low-frequency items.
For such data streams, PLC is an optimization worth pursuing since the
memory consumption savings can be significant.

However, for data streams with relatively equally divided frequencies, there
is no memory footprint to gain, but some accuracy is lost and additional
computations are necessary.

Clearly, PLC should only be used for data streams with a large proportion
of low-frequency items.
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4.3 Frequent Pattern (Itemset) Mining

Several frequent pattern mining algorithms have been investigated, and they
are again presented in order of appearance. Pattern mining works with
itemsets (there are no patterns to be found in single items), which are often
called transactions in the context of market basket analysis.

Note that the introduction of frequent item mining is still applicable (section
4.2), as are the explanations about window models (section 4.2.1) and the
algorithm classification (section 4.2.2).

4.3.1 Lossy Counting for Frequent Itemsets

This algorithm (which is one of the landmark model) builds upon the lossy
counting (LC) algorithm (see section 4.2.7), to add support for frequent item-
set mining. It was introduced by the same paper [53].

However, it clearly is much more difficult to find frequent itemsets than items
since the number of possible itemsets grows exponentially with the number
of different items: many more frequent itemsets are possible than the items
they consist of.

Changes

The set of entries D does no longer contain entries of the form (e, f, A), but
of the form (set, f, A), where set is a subset of items.

We no longer process the stream transaction per transaction, because then
memory consumption would rise significantly. Instead, we try to fill available
main memory with as many transactions as possible and then process such a
batch of transactions together. Let S denote the number of buckets in main
memory in the current batch being processed. We then update D as follows:

e update_set: For each entry (set, f, A) that exists in D, update f by
counting the occurrences of set in the current batch.
The updated entry is deleted if f + A < beyrrent, just like in LC.

e new set: If a set set in the current batch has frequency f > [, and
does not yet exist in D, add a new entry (set, f, beyrrent — B) to D.
This too, is analogous to what happens in LC, and is merely adjusted
to work with itemsets instead of items.
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It is important that [ is a large number: this will save memory because all
itemsets with a frequency less than § will never enter D and therefore save
memory. For smaller values of 8 (such as § = 1 when working with frequent
items instead of frequent itemsets), more spurious subsets will enter D, which
would drastically increase the average size of D, as well as drastically increase
the refresh rate—effectively harming the algorithm in both time and space.

4.3.2 FP-Stream

FP-stream, published in 2003 [58], is designed to mine time-sensitive data
streams. It actively maintains frequent patterns* under a tilted-time window
framework (explained a couple of paragraphs further) in order to answer time-
sensitive queries. The frequent patterns are compressed and stored using a
tree structure similar to FP-tree®, and updated incrementally as new data
flows in.

The task FP-stream wants to solve is to find the complete set of frequent
patterns in a data stream, with the limitation that one can only see a limited
set of transactions (those in the current window) at any moment.

In the FP-growth algorithm [61], the FP-tree provides a structure to facilitate
mining in a static data set environment (or a data set that is updated in
batches).

In the FP-stream algorithm, two data structures are used:

1. A FP-tree in main memory for storing transactions of the current win-
dow.

2. A pattern-tree, which is a tree structure similar to an FP-tree, but with
tilted-time windows embedded in it, for storing frequent patterns of the
windows in the past.

Incremental updates can be performed on both of these parts. Incremental
updates occur when some infrequent patterns become subfrequent or fre-
quent, or vice versa. At any point in time, the set of frequent patterns over
a period can be obtained from the pattern-tree in main memory.

4In [58], frequent itemsets are called frequent patterns, a name that was kept throughout
this section on FP-stream for clarity because some FP-stream-specific structures include
“pattern” in their names.

°Tt is assumed the reader is already familiar with the FP-growth algorithm [61]—if not,
that should be read first; note that a very clear explanation of FP-growth is available in
[25], including excellent figures to explain the data structures it uses.
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Figure 5: Frequent patterns for tilted-time windows.
(Figure courtesy of [58].)
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Figure 6: Pattern tree.
(Figure courtesy of [58].)

Mining Time-Sensitive Frequent Patterns in Data Streams

FP-stream can use any tilted-time window model (for more information
about window models and the tilted-time window model in particular, please
see 4.2.1). We focus on FP-stream with a natural tilted-time window model
(see figure 3 on page 22 again).

For each tilted-time window, a frequent pattern set is maintained—see figure
5. This allows us to answer queries like:

e What is the frequent pattern set over the periods t, and t57
e What are the periods when the pattern (a,b) is frequent?

e Does the support of (a,b,c) change dramatically in the period from t3
to to?
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Figure 7: Tilted-time windows embedded in pattern-tree.
(Figure courtesy of [58].)

That is, we have sufficient flexibility to mine a variety of types of frequent
patterns associated with time—possibilities are:

e Mining frequent patterns in the current window—obviously this is the
most basic requirement.

e Mining frequent patterns over time ranges with different granularities.

e Placing different weights on windows to mine weighted frequent pat-
terns.

e Mining evolution of frequent patterns based on the changes of their
occurrences in a sequence of windows.

However, we can store this frequent pattern set much more efficiently using
a compact tree presentation, called a pattern-tree. See figure 6. Note the
strong resemblance in structure with an FP-tree. The difference is that in
an FP-tree, all incoming transactions (itemsets) are stored, whereas in a
pattern-tree, only frequent patterns (itemsets) are stored. In fact, a pattern-
tree (as described thus far) is the same as an FP-tree, but it gets fed different
data: frequent transactions only instead of all transactions.

Finally, frequent patterns usually do not change significantly over time.
Therefore the pattern-trees for different tilted-time windows will likely have
a considerable amount of overlap. If we can embed the tilted-time window
structure into each node of the pattern-tree, we can save memory. The im-
portant assumption here is that frequencies of items do not change drastically
and thus the FP-tree structure (its hierarchical structure) does not need to
change®.

5This requires knowledge about the original FP-growth algorithm [61].
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Thus, we use only a single pattern-tree where at each node the frequency for
each tilted-time window is maintained. This final structure is what we call a
FP-stream. See figure 7 for an example of this.

Maintaining Tilted-Time Windows

As new data flows in, the tilted-time window table grows. In the case of
a natural tilted-time window, which is the running example, we need 4 +
24 4 31 + 12 = 71 windows. For this tilted-time window model, it is very
straightforward to perform maintenance: when 4 “quarter windows” have
been collected and a fifth has begun, they are merged to form 1 new “hour
window”. Analogously, when 24 “hour windows” have been collected and a
25" has begun, these 24 windows are merged to form one new “day window”,
and so on.

Tail Pruning

Given a batch of transactions B, let f;(i,j) denote the frequency of I in
B(i, j).
Let tg,...,t, be the tilted-time windows which group the batches seen thus

far, with ¢,, the oldest and t; the current. The window size of ¢; is denoted
w; (the number of transactions in the window).

The goal of FP-stream is to mine all frequent itemsets whose support is larger
than o over period T' =t Utp 1 U... Uty (with 0 < k <k’ < n). Then the
size of T clearly is W = wy + w11 + ... + wy. This goal can only be met if
we maintain all possible itemsets over all these periods no matter if they are
frequent or not”. However, this would require too much space.

Fortunately, there is a way to approximate this (and thus require less space).
Maintaining only f;(to), ..., fr(tm—1) for some m (with 0 < m < n) and drop-
ping the remaining tail sequences of tilted-time windows is sufficient. Specif-
ically, we drop tail sequences fr(t,,), ..., fr(t,) when the following conditions
hold:

A, Vil < i < n, fi(t;) < ow;

and

v v
VI il<m<l <n: fo(tl) < eZwi
i—=l =l

"Maintaining only frequent tilted-time window entries is not sufficient: as the stream
progresses, infrequent itemsets may become frequent.
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These conditions imply that all itemsets will be dropped that:

e have a frequency smaller than the minimum frequency per window
(ow;) in any window from window [ until the n'® i.e. first, i.e. most
distant past window (f7(t;) < ow;), and;

e have a frequency over all windows [ through n or I’ through n that is
lower than the average allowed error rate

As a result, we no longer have an exact frequency over T', but an approximate
frequency fr(T) = Srw Y fi(t) i mo> koand fi(T) = 0 ~ W if
m < k. The approximation is less than the actual frequency by at most as
much as:

fr(T) —eW < fI(T) < f1(T)

Thus, if we deliver all itemsets I for which f; > (0 — e)W, we will not miss
any frequent itemsets over the period T'. As a side-effect, we may incorrectly
return some itemsets whose real frequencies are between (o — €)W and oW.
This is reasonable when € is small.

We call this tail pruning.

Type I & IT Pruning

For any itemsets I C I’, the following holds: f; > fp. This is known as
the anti-monotone property: the frequency of an itemset is always equal or
larger than the the frequency of its supersets.

It can be shown that this still holds in the current context of approximate
frequency counting and tilted-time windows [58].

From this, it immediately follows that if an itemset I is in the current batch
B, but is not in the FP-stream structure, then no superset is in the structure.
Therefore, if f;(B) < €|B|, then none of the supersets need to be examined.
So the mining of B can prune its search and not evaluate supersets of I.

We call this type I pruning.

The consequence in the other direction is that if an itemset [ is being dropped
from the FP-stream structure, then all its supersets can also be dropped.

We call this type II pruning.
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Algorithm

For an in-depth explanation and evaluation of the algorithm, we refer to [58],
sections 3.6, 3.7 and 3.8.
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Figure 8: An example of anomalies in a 2D data set.
(Figure courtesy of [62].)

5 Anomaly Detection

This section is based on the comprehensive survey on anomaly detection by
Chandola, Banerjee and Kumar [62].

5.1 What are Anomalies?

Anomalies are patterns in data that to not conform to a notion of “normal
behavior”. This can be easily illustrated through a figure: see figure 8. It
illustrates anomalies in a simple 2D data set. The data set has two “normal”
regions: N and Ny. They are considered “normal” since most of the obser-
vations lie in these two regions. Points that are sufficiently far away from N;
and Ny are considered anomalies. In this example, that would be points oy
and oy, as well as all points in region Os.

Anomalies can be triggered by a variety of causes, depending on their context;
ranging from malicious activities (such as intrusions, credit card fraud, insur-
ance fraud, attack of a computer system) to mere anomalous circumstances
(such as an extremely long winter, an extreme amount of rainfall). All these
anomalies have in common that they are interesting to the analyst—there
must be real life relevance to make it into an anomaly.

Fields related to anomaly detection are noise removal, noise accommodation
(both of which deal with removing uninteresting data points from a data
set that are acting as a hindrance to data analysis) and novelty detection
(detecting previously unobserved patterns in the data set).
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5.2 Challenges

Conceptually, an anomaly is defined as a pattern that does not correspond
to normal behavior. So, one would think that while looking at a specific
region, one could easily discern the data that is not normal as an anomaly.
Unfortunately, several factors make this simple approach impossible:

e When malicious actions cause anomalies, the malicious adversaries of-
ten try to adapt themselves to make the anomalous events appear nor-
mal, thereby making detecting them much more difficult.

e The definition of “normal behavior” may evolve over time, thus the
current definition may no longer be representative in the future (cfr.
people’s signatures that change over time).

e In one domain, a small fluctuation may be considered normal, and
in another it may be considered an anomaly. Thus techniques of one
domain are not necessarily easily applied in another domain.

e Data sets often contain noise that tends to be similar to the actual
anomalies, which makes it difficult to detect the actual anomalies.

Due to the above challenges (and this list is not exhaustive), the anomaly
detection problem in its most general form is hard to solve: a technique
for one domain does not necessarily work for another. That is why existing
anomaly detection techniques are often designed especially for one particular
domain.

Concepts from other disciplines such as statistics, machine learning, data
mining, information theory and spectral theory have been used to develop
techniques for specific anomaly detection problems.

5.3 Types of Anomalies

There are three classes anomalies can be classified into:

5.3.1 Point Anomalies

If an individual data point can be considered anomalous in comparison with
the rest of the data set, then this data point is called a point anomaly. This
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is the simplest type of anomaly, and the majority of the research is focused
on this type.

The example (see figure 8 again) used in the introduction contains point
anomalies.

For a real life example, let us look at a simple credit card fraud detection
technique: if the amount spent in a transaction (the sole attribute of each
data point) is very high compared to the average amount, that will be con-
sidered a point anomaly.

5.3.2 Contextual Anomalies

If a data point is anomalous in a specific context (but not otherwise), then it
is called a contextual anomaly.

A context is provided by the structure of the data set: each data point is
defined using two sets of attributes:

1. Contextual attributes. These form the context for a data point. e.g. in
spatial data sets, the longitude and latitude of a location are contextual
attributes. In time-series data, time is a contextual attribute.

2. Behavioral attributes. These define the non-contextual properties of
a data point. e.g. in a spatial data set that describes the average
rainfall of the entire world, the amount of rainfall at any location is a
behavioral attribute.

The anomalous behavior is then determined using the values for the behav-
ioral attributes within a specific context. A data point may be a contextual
anomaly in a given context, but another data point with identical behavioral
attributes in another context (i.e. with different contextual attributes) may
be considered normal.

Contextual anomalies are most commonly investigated in time-series data
sets; figure 9 shows an example.

A similar example can be found in the credit card fraud detection domain,
that was used for an example of point anomalies previously. Suppose that
besides amount spent (which is of course a behavioral attribute), there is
another, contextual attribute: time of purchase. A €50 weekly shopping bill
is normal for a given individual, except in December, when he goes buying
presents for Christmas and New Year’s Eve, then a €200 bill is quite normal.
Therefore a €200 bill in February will be considered a contextual anomaly,
although a €200 bill in December will not be.
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Figure 9: Example of a contextual anomaly. The temperature at time ¢; is
the same as that at t5, but occurs in a different context: the temperature at
t; is considered normal, the temperature at ¢, is considered an anomaly.
(Figure courtesy of [62].)

5.3.3 Collective Anomalies

If a collection of data points is anomalous when compared with the entire
data set, it is called a collective anomaly. The individual data points in a
collective anomaly may not be anomalies on their own, but their collective
occurrence is anomalous.

In figure 10, a medical example is shown: it is the output of a human elec-
trocardiogram. The highlighted region is a collective anomaly because the
same low value exists for an abnormally long time, although by itself this
low value is not an anomaly (i.e. one such data point with this low value is
not an anomaly).

Note: while point anomalies can occur in any data set, collective anomalies
can only occur in data sets whose data points are related. By including pos-
sible contextual information (i.e. if it is available), both a point anomaly
detection problem and a collective anomaly detection problem can be trans-
formed into a contextual anomaly detection problem.

5.4 Anomaly Detection Modes

Labeling data points in an accurate manner, while ensuring that all types of
behaviors are represented, may be prohibitively expensive. Labeling is often
performed manually by a human expert—which clearly requires substantial
effort. Typically, getting a labeled set of anomalous data that covers all
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Figure 10: Example of a collective anomaly in a human electrocardiogram.
(Figure courtesy of [62].)

possible types of anomalous behavior is more difficult than getting labels for
normal behavior. Additionally, new anomalies may arise over time, for which
there is no labeled training data.

Anomaly detection techniques can operate according to three possible modes.
Which mode can be used depends on the availability of labels:

o Supervised Anomaly Detection. For supervised mode techniques, the
availability of a a training data set with labels for normal and anomaly
classes is a requirement.

o Semi-Supervised Anomaly Detection. Techniques that operate in this
mode, training data has labeled data points for only the normal class.
Because they do not need require labels for the anomaly class, they are
more widely applicable than supervised techniques.

o Unsupervised Anomaly Detection. These techniques don’t require any
training data and therefore are most widely applicable. They do make
the assumption, however, that normal instances are far more frequent
than anomalies. If this assumption is false, then a high false alarm rate
is the consequence.

5.5 Anomaly Detection Output

An obvious, yet important aspect of anomaly detection is the output of the
technique used, which can be of either of the following two types:
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e Scores. Scoring techniques assign an anomaly score to each data point
in the data set, depending on the degree of anomalousness of that data
point.

e Labels. Labeling techniques assign a label—either “normal” or “anoma-
lous”—to each data point.

Note: scoring based anomaly detection techniques allow for a selection within
all anomalies, e.g. to select the worst anomalies only.

5.6 Contextual Anomaly In Detail

There are many possible types of contextual attributes, some of which are:

1. Spatial. e.g. latitude and longitude

2. Graphs. The edges that connect nodes (with each node being a data
point) define the neighborhood for each node (data point).

3. Sequential. The data set contains sequential data points, i.e. the con-
textual attributes of a data point define its position in the sequence.
Note that there is an important difference between time-series data and
event sequence data: time-series data haven even inter-arrival times,
whereas event sequence data have uneven inter-arrival times.

While a lot of literature is available for point anomaly detection techniques,
the research on contextual anomaly detection has been limited. Contextual
anomaly detection techniques can be divided in two categories:

1. Reduction to a point anomaly detection problem. Contextual anomalies
are individual data points (like point anomalies), but are anomalous
only with respect to a certain context.

An obvious generic reduction technique is then to first identify a context
under which to operate and then perform a point anomaly detection
technique.

2. Model the structure of the data and then use this model to detect anoma-
lies. A generic technique in this category is the following. A model is
learned from training data that is able to predict the expected behavior
within a given context. If the observed behavior is significantly different
from the expected behavior, the corresponding data point is declared
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anomalous.

A simple example of this generic technique is regression in which the
contextual attributes can be used to predict the behavioral attribute
by fitting a regression line (sometimes also called a trend line) on the
data.

Computational Complexity

The computational complexity of the training phase for techniques that use
models of the data is typically higher than that of techniques that reduce the
problem to point anomaly detection. However, structure model techniques
have a relatively fast testing phase, thanks to the fact that each data point
only needs to be compared to a single model.

Advantages and Disadvantages of Contextual Anomaly Detection
Techniques

A natural definition of an anomaly is the main advantage of contextual
anomaly detection techniques: in real life applications, data points tend to
be similar within a given context. Also, these techniques are able to de-
tect anomalies that may not be detected when using techniques that take a
global view of the data set (which is exactly what point anomaly detection
techniques do).

The main disadvantage is a very obvious one: contextual anomaly detection
techniques are only applicable when a context is present in the data set.

5.7 Contextual Anomaly Algorithms

In the context of this thesis, we are clearly dealing with sequential data with
contextual anomalies (with episode duration being the behavioral attribute
and all other attributes contextual). However, we cannot assume even inter-
arrival times, hence we need to look at techniques for event sequence data
only.

After searching for papers on contextual anomaly detection algorithms that
work on event sequences, two interesting papers stood out: the algorithm by
Vilalta/Ma and the Timeweaver algorithm.

There is a strong reason for not examining point anomaly algorithms in
more detail: to be able to reduce a contextual anomaly algorithm to a point
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anomaly algorithm, it is necessary to consider each combination of contex-
tual attributes and then look at the behavior attributes for that contextual
attribute.
In the context of this thesis, the number of contextual attributes can grow
very large, which then makes reduction to point anomaly detection rather
inefficient.

5.7.1 Vilalta/Ma

Published in 2002, Vilalta & Ma [64] designed a system based on frequent
itemset mining to find patterns in historical data. More specifically, their
approach extracts temporal patterns from data to predict the occurrence of
rare target events. They make two assumptions:

1. that the events are being characterized by categorical attributes and
are occurring with uneven inter-arrival times, which makes this an al-
gorithm to work on event sequence data and not time-series data;

2. that the target events are highly infrequent.

They have developed an efficient algorithm for this particular problem set
that involves performing a search for all frequent eventsets (which are just
a special type of itemsets: instead of “items” they contain “events types”)
that precede the target events. The patterns that are found are combined
into a rule-based model for prediction.

Their approach differs from previous work that also uses the learning strat-
egy: most learning algorithms assume even class distributions and adopt
a discriminant-description strategy: they search for separators (discrimi-
nants) that best separate (discriminate) examples of different classes. Under
skewed distributions (which is the case here: the target events are highly
infrequent), separating the under-represented class is difficult. That is why
they have opted for a characteristic-description strategy: instead of searching
for separators, they search for common properties, and they do so by looking
at the events preceding a target event, to find common precursor events.

The Event Prediction Problem, Formally

The fundamental unit of study is an event. An event is of the form d; = (e;, ¢;)
where e; indicates the event type and ¢; indicates the occurrence time.
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Events belong in a sequence D =< dy,ds, ..., d, >.

We are interested in predicting certain kinds of events that occur in sequence
D. We refer to this subset of events as target events: Digrger C D. We
assume that the relative frequency of target events in comparison with all
events is low. Furthermore, target events do not represent a global property
of D (such as a trend or periodicity), but rather a local property.

The user must specify a target event type eyqrqer (€.g. all fatal events), that

defines Dygrger as
Dtarget - {dz eD | €; = etarget}

The framework assumes a dataset D of size n , containing a sequence of events
(as defined before). Event types take on categorical values. We also assume
we have identified a set of events Dygrger C D with |Dygrger| = m < n = |D|.

The approach the Vilalta/Ma algorithm takes is to capture patterns that
characterize the conditions that precede each target event (i.e. where e; =
€rarget). Specifically, the goal is to find out what types of events frequently
precede a target event, for the purpose of prediction. We look at those
preceding events within a time window of fixed size W before a target event
(as illustrated in figure 11).

Next, there is a whole series of definitions for an “eventset”, that will be used
in the remainder of this section:

e Matching. An eventset Z is a set of event types {e;}. Eventset Z
matches the set of events in window W if every event type e; € Z is
found in W.

e Support. An eventset Z has support s in D if s% of all windows of size
W preceding target events are matched by Z. Eventset Z is frequent
if s is above a minimum user-defined threshold.

e Confidence. An eventset Z has confidence ¢ in D if ¢% of all windows
of size W matched by Z precede a target event. Eventset Z is accurate
if ¢ is above a minimum user-defined threshold.

e Specificity. An eventset Z; is said to be more specific than an eventset
Z; it Z; C Z;.

e Order. We impose a partial ordering over the space of eventsets. An
eventset Z; is marked as having a higher rank than eventset Z;, denoted
Z; = Zj if any of the following conditions is true:
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Figure 11: A plot of different event types versus time. Before each target
event, there is a time window. This allows us to identify frequent sets of
event types that act as indicators/precursors.

(Figure courtesy of [64].)

1. The confidence of Z; is greater than that of Z;.

2. The confidence of Z; equals that of Z;, but the support of Z; is
greater than the support of Z;.

3. The confidence and support of Z; equal that of Z;, but Z; is more
specific than Z;.

Prediction Strategy

Their prediction strategy takes the following steps:

1. Characterize target events by looking at a fixed time window that pre-
cedes the target event and then finding the types of events that fre-
quently occur within that window. See figure 11 for an easy to under-
stand graphical explanation.

2. Validate that the event types found in step 1 wuniquely characterize
target events, and that they do not often occur outside of the window
directly preceding the target event.

3. Combine the validated event types found in step 2 into rules, to end up
with a set of rules from which predictions can be made (i.e. a rule-based
prediction system).

Algorithmically, these steps take the following shape:
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1. Frequent eventsets. This employs the standard Apriori [60] frequent
itemset mining algorithm over each window (but of course this could
be replaced with any frequent itemset mining algorithm, such as FP-
growth [61]) to find all frequent eventsets. E.g. in the case of figure
11, the eventset {a,b,d} would be found as the only frequent eventset
with a sufficiently high minimum support. Let’s call the collection of
frequent eventsets B, then B = {{a, b, d}}.

Note that because thanks to the use of eventsets, the order of events
does no longer matter, nor do the inter-arrival times.

2. Accurate eventsets. With frequent eventsets calculated, the next step

is filtering out those eventsets that do not meet minimum confidence.
Here, the general idea is to look at the number of times each of the fre-
quent eventsets occurs outside the time windows preceding the target
events. We capture all event types within each window that does not
overlap with the time windows that precede target events. We store
these eventsets in a new database of eventsets B’. This database con-
tains all eventsets that do not precede target events.
Now we can calculate the confidence for the frequent eventsets in B. Let
fz(B) be the number of transactions in B that matches the eventset Z
and fz(B’) that for B’. Then the confidence of the eventset Z is defined
as follows: confidence(Z, B, B') = f,(B)/f.(B)+ f.(B’). Now we can
filter the frequent eventsets to only keep those with high confidence,
i.e. accurate eventsets. We store the result in V.

3. Building a rule-based model. For this, we first need to order the eventsets
in V depending on their rank. This allows us to find the most accurate
and specific rules first. Then, we iterate over V as long as it is not
empty. In each iteration, we select the next best eventset Z; and re-
moves all other eventsets Z; in V that are more general than Z;. This
effectively eliminates eventsets that refer to the same pattern as Z; but
that are unnecessarily general. A rule for Z; is generated, of the form
Z; — targetevent and is added to R. Then the next iteration begins.

The resulting set of rules R can be used for prediction.

5.7.2 Timeweaver

Timeweaver is a genetic algorithm, published in 1998 [63], that is able to learn
to predict rare events from sequences of events with categorical attributes.
It achieves this by identifying predictive temporal and sequential patterns.
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Because this algorithm is based on genetic algorithms, and explaining that
too in full detail would lead us too far, this algorithm is only explained from
a high level perspective. The explanation should be sufficient to grok the
algorithm and put it into perspective next to the Vilalta/Ma algorithm (see
section 5.7.1).

Prediction Pattern

A prediction pattern is a sequence of events connected by ordering primitives
that define sequential or temporal constraints between consecutive events.
The three ordering primitives are defined below, with A, B, C and D repre-
senting individual events:

o Wildcard “*”. Matches any number of events, e.g. the prediction
pattern A*D matches ABCD

o Next “.7. Matches no events, e.g. the prediction pattern D.A.C. only
matches DAC.

e Unordered “|”. Allows events to occur in any order and is commutative,
e.g. the prediction pattern A|C|D will match ACD, ADC, CDA, and
SO on.

£4| ”»

The “|” primitive has the highest precedence. Each categorical attribute is
allowed to take on the “?” value, which matches any value. A prediction
pattern also has a pattern duration, of course represented by an integer.

Then a prediction pattern matches a sequence of events within an event
sequence if:

1. events within the event sequence are matched by the prediction pattern,
and;

2. ordering constraints in the prediction pattern are obeyed, and;

3. the events in the match occur within the pattern duration.

This prediction pattern language allows for flexible and noise-tolerant pre-
diction rules. For example: “if 3 (or more) A events and 4 (or more) B events
occur within an hour, then predict the target event”.

This language was designed to be simple yet useful. Extensions are possible
and would only require changes to timeweaver’s pattern-matching logic.

33



Algorithm

First, the population is initialized by creating prediction patterns containing
a single event, with the categorical attribute values set to the wildcard value
“?7 50% of the time and to a randomly selected categorical attribute value
the remaining 50% of the time.

The genetic algorithm then repeatedly does the following until a stopping
criterion is met: it selects 2 individuals from the population and applies the
mutation operator on both individuals (which randomly modifies a prediction
pattern: changing the categorical attribute values, ordering primitives or
pattern duration) or crossover (which may result in offspring of different
length from the parents, and thus may result in any size of pattern over
time).

Now, of course it is impossible to keep adding new prediction patterns: after
a certain amount of prediction patterns is being maintained, it becomes nec-
essary to replace existing ones with new ones (i.e. offspring from crossover).
We cannot use simple strategies such as FIFO here; it is necessary to balance
two opposing criteria: maintaining a diverse population (to keep all options
open) and focusing search in the most profitable areas. This can be achieved
by evaluating prediction patterns on exactly those properties: weighing each
pattern’s fitness versus its uniqueness when compared to the other patterns.

For more details, please consult [63].
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6 OLAP: Data Cube

OLAP—short for On-Line Analytical Processing—is an approach designed
to be able to quickly answer queries about multidimensional data.

Some of the terminology and capabilities of OLAP systems can be found in
today’s spreadsheet applications, so it is in fact very likely that you're already
(unwittingly) familiar with OLAP principles! OLAP systems are designed to
make interactive analysis of (multidimensional) data possible and typically
provide extensive visualization and summarization capabilities.

6.1 Multidimensional Data Representation
6.1.1 Fact Table

The starting point typically is a fact table: a tabular representation of the
data set.

The Iris data set

In table 1, a fact table of the multidimensional Iris data set® can
be found. It has been simplified® to serve as a simple, easy-to-
grasp example that will be used throughout the OLAP section to
demonstrate data transformations and manipulations.

For each of the 3 types of Irises that have been reviewed (Setosa,
Versicolour and Virginica), the petal length and petal width have
been analyzed. The lengths and widths that were found have
then been marked® as “low”, “medium” or “high”. 50 flowers of
each species were analyzed.

The table is split in three parts, one for each species (thus each
of these parts’ counts sums up to a total of 50).

In the remainder of this section, you will often see boxes like this
one (with a double frame). Each of those apply the explanations
in the preceding piece of text to the Iris data set. This should
help the reader gain a deeper understanding much faster.

?A famous data set from 1936 by the statistician R.A. Fisher; can be
obtained from the UCI Machine Learning Repository [26].

bTwo attributes have been omitted: sepal length and sepal width.

“More accurately, the continuous attributes petal length and petal width
have been discretized. They were numbers in the range [0, oo[ (in centimers)
that have been discretized to the intervals [0,0.75] — ”low”, [0.75,1.75] —
"medium” and [1.75, co[— "high”.
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’ petal length \ petal width \ species type \ count ‘

low low Setosa 46
low medium Setosa 2
low high Setosa 0
medium low Setosa 2
medium medium Setosa 0
medium high Setosa 0
high low Setosa 0
high medium Setosa 0
high high Setosa 0
low low Versicolour 0
low medium | Versicolour 0
low high Versicolour 0
medium low Versicolour 0
medium medium | Versicolour 43
medium high Versicolour 3
high low Versicolour 0
high medium | Versicolour 2
high high Versicolour 2
low low Virginica 0
low medium Virginica 0
low high Virginica 0
medium low Virginica 0
medium medium Virginica 0
medium high Virginica 3
high low Virginica 0
high medium Virginica 3
high high Virginica 44

Table 1: The Iris data set: a table representation. Contains data on a number
of flowers having a particular combination of petal width, petal length and
species type.

6.1.2 Multidimensional Array

A key motivation for using a multidimensional viewpoint of data is the im-
portance of aggregating data from various perspectives. In sales, you might

56



want to find totals for a specific product per year and per location for exam-
ple. Or per day. Or for all products per location. Anything is possible.

To represent this input data as a multidimensional array, two steps are nec-
essary:

1. identification of the dimensions (or functional attributes); these must
be categorical attributes®

2. identification of the attribute that is the focus of the analysis (the
measure attribute)—this attribute is called the target quantity; this
must be a quantitative attribute

Note that it is possible to have multiple target quantities (i.e. analyze multi-
ple quantitative attributes simultaneously). However, to keep the reasoning
straightforward, we will impose a limit of a single target quantity.

One could simply analyze each target quantity separately, or apply an arbi-
trary formula to combine multiple quantitative attributes into a single target
quantity.

The dimensions are categorical attributes. The values of an attribute serve as
the indices into the array for the dimension corresponding to that attribute;
the size of this dimension is equal to the number of different values for this
attribute.

8Obviously, any attribute can be transformed into a categorical attribute by means of
discretization. This is also what has been done for the example: the petal length and petal
width examples have been discretized.
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Dimensions of a multidimensional array representation

In the case of the Iris data set (see table 1), there are a single
quantitative attribute (count) and 3 categorical attributes:
1. petal length

2. petal width

3. species type
Petal length and petal width range® over the same 3 values:
“low”, “medium” and “high”. Hence 3 is the size of both the
petal length dimension and the petal width dimension.
There are 3 different species and thus the species type dimension
is also of size 3. Hence there are 3 x 3 x 3 indices, with 27
corresponding values.

?As already mentioned before, petal length and petal width originally also
were quantitative attributes.

Each combination of attribute values (one for each attribute) defines a cell in
the multidimensional array; each cell contains the value of the target quan-
tity. The target attribute is a quantitative attribute because typically the
goal is to look at aggregate quantities (total, average, minimum, maximum,
standard deviation ...; the list can go on endlessly when adding domain-
specific functions for physics, financial analysis, etc.).
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Multidimensional array representation

There are three categorical attributes: petal length, petal width
and species type. There is one quantitative attribute: the corre-
sponding count. Since there are three categorical attributes, this
can be represented in a three-dimensional array. See figure 12.
Note that this is not a data cube: it is merely a multidimensional
representation. It has 3 dimensions and therefore it looks like and
is a cube, but not a data cube. As long as not all aggregates are
there, it is not a data cube! (Note that there is for example no
aggregate count for all flowers by species type, amongst others.)
At least in OLAP context.

It may be called a data cube representation though: it is just a
way to represent a data set—mno calculations are required. For
the result of the data cube operator, calculations are required.

A Petal
Length
Virginica
Versicolour/ 7
Setosa
high 0 0 0 ]
medium 0 0 2 /
low 0 2 46 Species
- Type

etal 5 3

Width = -

nedium

Figure 12: A multidimensional representation of the Iris data
set—Dbut not a data cube!
(Figure courtesy of [25].)
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6.2 Slicing and Dicing

Slicing and dicing are both very straightforward. Slicing requires a specific
value to be specified for one or more dimensions. Dicing does not require a
single specific value to be chosen, but allows a range of attribute values to
be specified.

Slicing

In the context of the Iris data set example: the “front” of the
multidimensional representation (figure 12) is one of the three
displayed slices (table 2), the other two possible slices (tables 3
and 4) are the “deeper” slices, when looking at the multidimen-
sional representation from the same perspective.

Setosa petal width
high | medium | low
high 0 0 0
petal length | medium | 0 0 2
low 0 2 46

Table 2: Slice where the species “Setosa” has been selected.

Versicolour petal width
high | medium | low
high 2 2 0
petal length | medium | 3 43 0
low 0 0 0

Table 3: Slice where the species “Versicolour” has been selected.

Virginica petal width
high | medium | low
high 44 3 0
petal length | medium | 3 0 0
low 0 0 0

Table 4: Slice where the species “Virginica” has been selected.
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Dicing

A possible dice for the Iris data set can be seen in table 5:

it

is a subset of the “front” of the multidimensional representation

(figure 12).

Setosa

petal width

high

medium

low

petal length ’ low | O

2

46

Table 5: Slice where the species “Setosa” and petal length “low”

have been selected.
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6.3 Data Cube

Before going into details about the data cube, let’s start with an example—it
will immediately be clear how a data cube can be used.

Total  Virginigé A By Speslics Type
Versicolof A0——F——2——F1s—pF
9 - 7 7 7
By Rete] it ¢

D
=

?: ?.lbm

c

Figure 13: Annotated data cube.

6.3.1 Definition

As input, the data cube operator accepts a fact table T. T has n aggregation
attributes A, ..., A, and 1 measure attribute M.

T(Ay,. .. Ay, M)

The aggregation function is applied to the measure attribute M, e.g. SUMQ).
The SQL syntax for the data cube operator is:
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SELECT A;, ..., A,, CSUM

FROM T

GROUP BY A;, ..., A,, SUM(*) AS CSUM
WITH CUBE

Now, let us consider the semantics behind the above. Consider a subset of
the aggregation attributes S C {A;,...,A,}. Define the query Qs as :

SELECT A&,, ..., A,, SUM(M)
FROM T
GROUP BY S

with

1M ifAEs
' ALL otherwise

(In the above, each ALL value is in fact an alias for a set: the set of all values
of the attribute over which an aggregate is computed.)

Each Qg defines aggregation over a specific combination of attributes. Then
the entire cube is the union of all these Qs (i.e. with all possible subsets S), of
which there are 2" (i.e. there are 2" subsets S for n aggregation attributes).

If the cardinality of the n attributes are Cy, Cs, ..., C, (i.e. cardinality(A;) =
C;), then the cardinality of the resulting cube relation is [ [(C;+1). The extra
value in each attribute domain is the ALL value, which represents the set of
values over which the aggregate is computed.

6.4 Generalized constructs

The data cube (or just cube) operator generalizes the following constructs:
e histogram
e cross tabulation

e roll-up

o drill-down
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6.4.1 Histogram

A histogram is a bar chart representing a frequency distribution; heights of
the bars represent observed frequencies.

Histogram

In figure 14, two sample histograms can be seen for the Iris data
set. The first is a 1D histogram (based on the petal width), the
second is a 2D histogram (based on petal width and petal length).
Petal length and width have not been discretized here (to “low”,
“medium” and “high”) as they were previously. Instead, they
were discretized into numerical ranges.

05

petal width petal length

15
Petal Width

(a) 1D histogram (b) 2D histogram

Figure 14: Sample histograms for the Iris data set.
(Figures courtesy of [25].)

6.4.2 Cross tabulation

A cross tabulation (“cross tab”) displays the joint distribution of two or more
variables, along with the marginal totals. In the case of two variables, these
are the row and sum totals.

Note: a cross-tabulation over exactly two dimensions is also called a pivot.
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Cross tabulation

Cross tabulation are slices, with added marginal totals. Table 6
is the cross-tabulation for the slice in table 2, as is table 7 the
cross tabulation for table 3 and table 8 the cross tabulation for

the slice in table 4.

Setosa petal width
high | medium | low | total
high 0 0 0 0
petal length | medium | 0 0 2 2
low 0 2 46 | 48
total 0 2 48 | 50

Table 6: Cross tabulation of the slice where the species “Setosa”

has been selected.

Versicolour petal width
high | medium | low | total
high 2 2 0 4
petal length | medium | 3 43 0 46
low 0 0 0 0
total 5) 45 0 50

Table 7: Cross tabulation of the slice where the species “Versi-

colour” has been selected.

Virginica petal width
high | medium | low | total
high 44 3 0 47
petal length | medium | 3 0 0 3
low 0 0 0 0
total 47 3 0 50

Table 8: Cross tabulation of the slice where the species “Vir-

ginica” has been selected.
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6.4.3 Roll-up

A roll-up is the aggregation of values within a dimension—not across an
entire dimension!

Note: this requires that the attribute that is being rolled up can be considered
hierarchical in some sense, i.e., that it can be viewed with different levels of
granularity.

Roll-up

Since the Iris data set does not contain any hierarchical data, we
cannot apply roll-up to it. So, another example is presented.
For example, given sales data with entries for each date, we can
roll up (aggregate) the data across all dates in a month, resulting
in monthly sales totals. This is aggregation within a dimension;
aggregation across a dimension would have given us the total of
all sales ever recorded.

6.4.4 Drill-down

A drill-down can be considered the inverse of a roll-up: instead of viewing the
data “at a higher level”, the data will be viewed with more granularity— “at
a lower level”.

Note: this requires that the attribute that is being rolled up can be considered
hierarchical in some sense, i.e., that it can be viewed with different levels of
granularity.

Drill-down

Since the Iris data set does not contain any hierarchical data, we
cannot apply drill-down to it. So, another example is presented.
Continuing on the example for roll-up, a drill-down would for
example split monthly sales totals into daily sales totals. For
such drill-downs to be possible, it is of course a necessity that the
underlying data is sufficiently granular.

6.4.5 Generalization explained

The generalization of the aforementioned constructs may appear obvious. It
is simply another ’level’ of aggregation. Schematically, it could be described
as follows:
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aggregate (= 0D data cube)
C
GROUP BY (= 1D data cube)
-
cross tab (= 2D data cube)
C
3D data cube

nD data cube

To ensure that you understand this, the following illustration makes it very
clear in a graphical manner:

Aggregate
(.

Sum Group By
(with total})

By Cotor
RED
WHITE
BLUE

Sum Cross Tab
Chevy Ford By Color

RED
WHITE
BLUE

AL ] The Data Cube and

Sum  The Sub-Space Aggregates
Chie, “Ony 400
€, 0 Vil
S

By Make & Color
Sum By Color

Figure 15: The date cube is the n-dimensional generalization of more simple
aggregation functions.
(Figure courtesy of [65].)
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6.5 The Data Cube Operator

Typically, data is stored in an RDBMS. To calculate the above constructs,
the GROUP BY operator is necessary. This operator partitions the relation
into disjoint tuple sets (based on one or more attributes that are common
amongst the tuples in each tuple set) and then aggregates over each set. In
other words, using the GROUP BY construct allows a table to be created of
many aggregate values, indexed by a set of attributes.

However, there are some problems with using the GROUP BY operator [65].

Histogram

The standard SQL GROUP BY operator does not allow for easy construction
of histograms (aggregation over computed categories), because it does not
allow functions to be used in the GROUP BY clause®.

But that doesn’t mean it can’t be expressed at all: SQL is Turing complete
and therefore it can be expressed. It just can’t be expressed very elegantly
or succinctly. A SQL statement of the type GROUP BY F() is disallowed, but
one can still achieve a group by on a function by applying the function in a
subquery and performing the group by over the result.

For example, it is desirable to be able to write:

SELECT avgPetalLength , SpeciesType

FROM Iris

GROUP BY AVG( PetalLength) AS avgPetallLength ,
SpeciesType

But instead, we’re forced to use a subquery, which is less concise:

SELECT avgPetalLength , SpeciesType
FROM (SELECT AVG( PetalLength)
AS avgPetalLength ,
Speciestype

FROM Iris) AS sub
GROUP BY avgPetalLength ,
SpeciesType

9Not in SQL-92, which was available at the time of writing [65] (SQL3 was in develop-
ment at the time of writing [65] and was to later become the SQL:1999 standard) and still
not in SQL:2008 [66], which is the latest SQL standard at the time of writing this text.
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Roll-up & drill-down

To calculate a roll-up over n dimensions requires n unions: n group by SQL
statements need to be unioned together—1 per dimension that is being rolled

up.

The drill-down case is analogous to that for roll-up.

Since the Iris data set does not contain any hierarchical data, we
cannot apply drill-down to it. So, another example is presented.

Suppose car sales data is being collected in a Car (Model, Year,
Color, Sales) table. Then it is likely that one would like
to create a roll up of Sales by Model by Year by Color, i.e.
ascending up the “Model-Year-Color” hierarchy, to decrease
granularity at each step.

This would require the union of a group by on Model, then a
group by on Model, Year and finally a group by on Model, Year,
Color. We now have a roll-up over 3 dimensions, which required
the union of 3 group by statements.

The end result looks like this:

’ Model \ Year \ Color \ Sales ‘
Chevy | 1994 | white | 40
Chevy | 1994 | black | 50
Chevy | 1995 | white | 115
Chevy | 1995 | black | 85
Chevy | 1994 | ALL 90
Chevy | 1995 | ALL 200
| Chevy | ALL | ALL | 290 |

Table 9: Sample roll-up result. Granularity decreases from top
to bottom, as we roll up by more attributes in the hierarchy.

Cross tabulation

Roll-ups are asymmetric, cross tabulations are symmetric and require even
more unions: 2" unions!
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This example continues on the roll-up example above.

Suppose we wanted to show the cross tabulation of the sales for
a specific model, with the range of values for Year as columns
and the range of values for Color as the rows. Then we can reuse
the results for the roll-up example. But for roll-up, we didn’t
aggregate sales by color—this is why roll-up is called assymetric.

So we lack the rows that aggregate sales by Color. These rows
are generated by one additional unioned in group by statement,
and contain:

’ Model ‘ Year ‘ Color ‘ Sales ‘

Chevy | ALL | white | 155
Chevy | ALL | black | 135

Table 10: Rows generated by aggregating by Color.

Combined, we now have a symmetric aggregation result, which
required 4 = 2% unioned group by statements (3 from the roll-up
example plus 1 additional group by statement from this example),
while we’re building a 2D cross-tabulation (on Year and Color).
Molding the data into a cleaner representation like previous cross
tabulations gives us:

Chevy Year
1994 | 1995 | total (ALL)
black 50 85 135
Color white 10 75 85
total (ALL) | 60 | 160 220

Table 11: Cross tabulation of Model by Year and Color.

Solution to daunting SQL: the data cube operator
As should be clear by now, the data cube operator was not absolutely neces-

sary in the strictest sense: anything that can be achieved with the data cube
operator can be achieved without it. But thanks to the data cube operator, it
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is no longer necessary to apply the same patterns repeatingly: the necessary
SQL becomes much less daunting (e.g. a 6D cross tabulation would require
a 20 = 64 way union).

And because the exact logic behind it is now abstracted away in the SQL
language syntax, it paved the way for possible future optimizations.

To support the data cube operator, SQL’s SELECT-GROUP-BY-HAVING syntax
was extended to support histograms, decorations'® and the CUBE operator
(as well as the ROLLUP operator!!).

Microsoft pioneered this in their SQL Server RDBMS product [65].

6.6 Elaborate data cube example

Continuing with the Iris data set (see table 1), a sample query that utilizes
the newly introduced data cube operator is listed below:

SELECT Petallength, PetalWidth, SpeciesType, COUNT(*) AS CCount
FROM Iris
GROUP BY Petallength,
PetalWidth,
SpeciesType
WITH CUBE;

For the semantics behind this query, see the definition in section 6.3.1.

It might be helpful to give you a deeper understanding of ALL values (again,
see the definition), in the context of this example.

Each ALL value is in fact an alias for a set: the set over which the aggregate
is computed. In this example, these respective sets are:

o ALL(speciesType) = {’Setosa’, ’Versicolour’, ’Virginica’}

e ALL(petalLength) {’low’, ’medium’, ’high’}

e ALL(petalWidth) = {’low’, ’medium’, ’high’}

Thinking of the ALL value as an alias of these sets, makes it easier to un-
derstand and is how it operates internally. The ALL string really is just for
display.

0Decorations are columns that do not appear in the GROUP BY list—and that are
therefore not allowed to be projected (be in the SELECT list) in traditional SQL—but that
are functionally dependent on the grouping columns. See [65] for more details.

HUModern RDBMSes such as MySQL 5.0 support this [67].
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Data cube of 3D data

In this section, we consider all three categorical attribues of table 1: Petal
Length, Petal Width and Species Type. Three categorical attributes implies
3D data and therefore we will need 1+ (2* —1) = 147 = 8 UNIONed queries.
This is the case:

-- Standard GROUP BY.
SELECT PetallLength, PetalWidth, SpeciesType, COUNT (%)
FROM Iris
GROUP BY Petallength, PetalWidth, SpeciesType
)
UNION
(
-- Super-aggregate of SpeciesType.
SELECT Petallength, PetalWidth, ALL, COUNT (%)
FROM Iris
GROUP BY Petallength, PetalWidth
)
UNION

(
-- Super-aggregate of PetalWidth.

SELECT PetalLength, ALL, SpeciesType, COUNT (%)
FROM Iris
GROUP BY Petallength, SpeciesType

)

UNION

(
-- Super-aggregate on PetalLength.

SELECT ALL, PetalWidth, SpeciesType, COUNT (%)
FROM Iris
GROUP BY PetalWidth, SpeciesType

)

UNION

(
-- Super-aggregate of PetalWidth and Speciestype.

SELECT PetallLength, ALL, ALL COUNT (%)
FROM Iris
GROUP BY Petallength

)

UNION

(
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-- Super-aggregate of Petallength and PetallWidth.
SELECT ALL, ALL, SpeciesType, COUNT (%)

FROM Iris

GROUP BY SpeciesType

)
UNION
(
-- Super-aggregate of Petallength and Spectiestype.
SELECT ALL, PetalWidth, ALL, COUNT (%)
FROM Iris
GROUP BY PetalWidth
)
UNION
(
-- Super-aggregate of PetalLength, PetalWidth and Speciestype.
SELECT ALL, ALL, ALL COUNT (%)
FROM Iris
)

Moreover, all 3 categorical attributes may assume 3 different values (“low”,
“medium” and “high” for Petal Length and Petal Width, “Setosa”, “Versi-
colour” and “Virginica” for Species Type), thus C; = Cy = C3 = 3. This
implies that the cardinality of the resulting data cube should be (C; 4 1) x
(Co+1)+(C34+1)=4x4x4=064.

This can also be checked by examining the table below (in which the results
of the data cube operator are listed): there are 27+ (3x9)+ (3 x3)+1 = 64
rows, therefore its cardinality is 64.

’ Petal Length ‘ Petal Width ‘ Species Type ‘ Count ‘
The input data: no aggregation (27)

low low Setosa 46
low medium Setosa 2
low high Setosa 0
medium low Setosa 2
medium medium Setosa 0
medium high Setosa 0
high low Setosa 0
high medium Setosa 0
high high Setosa 0
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’ Petal Length \ Petal Width \ Species Type \ Count ‘

low low Versicolour 0
low medium Versicolour 0
low high Versicolour 0
medium low Versicolour 0
medium medium Versicolour 43
medium high Versicolour 3
high low Versicolour 0
high medium Versicolour 2
high high Versicolour 2
low low Virginica 0
low medium Virginica 0
low high Virginica 0
medium low Virginica 0
medium medium Virginica 0
medium high Virginica 3
high low Virginica 0
high medium Virginica 3
high high Virginica 44
By Petal Length and Petal Width (9)
low low ALL 46
low medium ALL 2
low high ALL 0
medium low ALL 2
medium medium ALL 43
medium high ALL 6
high low ALL 0
high medium ALL 5
high high ALL 46
By Petal Length and Species Type (9)
low ALL Setosa 48
medium ALL Setosa 2
high ALL Setosa 0
low ALL Versicolour 0
medium ALL Versicolour 46
high ALL Versicolour 4
low ALL Virginica 0
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’ Petal Length \ Petal Width \ Species Type \ Count ‘

medium ALL Virginica 3
high ALL Virginica 47
By Petal Width and Species Type (9)
ALL low Setosa 48
ALL medium Setosa 2
ALL high Setosa 0
ALL low Versicolour 0
ALL medium Versicolour 45
ALL high Versicolour 5
ALL low Virginica 0
ALL medium Virginica 3
ALL high Virginica 47
By Petal Length (3)
low ALL ALL 48
medium ALL ALL 51
high ALL ALL 51
By Petal Width (3)
ALL low ALL 48
ALL medium ALL 50
ALL high ALL 52
By Species Type (3)
ALL ALL Setosa 50
ALL ALL Versicolour 50
ALL ALL Virginica 50
Total (1)
| ALL ALL | ALL | 150 |
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6.7 Performance

One key demand of OLAP applications is that queries be answered quickly.
This is of course not a demand that is unique to OLAP: it is very rare that
it is a requirement for a database or any other software to respond slowly.
But OLAP’s requirements are fairly stringent.

Fortunately, the multidimensional data model of OLAP is structured enough
to allow this key demand to be approached.

If there is one key property to OLAP or multidimensional data analysis,
then it is the ability to simultaneously aggregate across many dimensions.
As we have discussed before (see section 6.5) and observed in full detail (see
section 6.6), this translates to many simultaneous GROUP BY statements in
SQL, which can result in a performance bottleneck.

More efficient schemes to perform these calculations have been researched
by the University of Wisconsin-Madison [68], amongst others. Initially, they
have focused on efficient algorithms to compute the cube operator, using the
standard RDMBS techniques of sorting and hashing. As always, precom-
puting frequently used data can be used to speed up computer programs.
In terms of multidimensional data analysis, aggregates on some subsets of
dimensions can be precomputed. However, it is impossible to precompute
everything, and we may end up precomputing unneeded aggregates. And
because of the hierarchical nature (i.e. one subset of dimensions may be a
subset of another subset), it is possible that the increase in required storage
space may be unreasonable.

6.7.1 Efficient Cubing

The key to efficient cubing of relational tables is understanding how the
cuboids'? are related to each other. Then, one can exploit these relation-
ships to minimize the number of calculations, and, more importantly (as
virtually always for database systems): less I/O. [68] suggests an approach
based on a hierarchical structure. They explore a class of sorting-based meth-
ods that attempt to minimize the number sorting steps by overlapping the
computations of the various cuboids (and hence minimize the number of disk
[/Os). This approach always performs significantly better than the proto-
type method referenced in section 6.5, which simply computes all required
GROUP BY statements in sequence.

2Each combination of aggregates is called a cuboid, and all these cuboids together form
the cube.
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6.7.2 Precomputing for Speed: Storage Explosion

The more aggregates that are precomputed, the faster queries can be an-
swered. However, it is difficult to say in advance how much space (storage)
will be required for a certain amount of precomputation. There are different
methods (discussed in [68]) to estimate this:

1. It is assumed that the data is uniformly distributed. This assumption
allows for a mathematical approximation of the number of tuples that
will appear in the result of the cube computation. This is simple statis-
tics:

If r elements are chosen uniformly and at random from a set of
n elements, the expected number of distinct elements obtained is
n—n(l—1/n)".

— Feller in [69], page 241

This can then be used to calculate the upper bound on the size of the
cube. n is the product of the distinct number of values of all attributes
on which is being grouped (i.e. the number of all possible different
combinations of values) and r the number of tuples in the relation.

2. The second method uses a simple sampling-based algorithm: take a
random subset of the table, compute the cube on that subset. Then
estimate the size of the actual cube by linearly scaling the size of the

cube of the sample by the % ratio. Clearly, if the random sam-

o  sample size

ple is biased, then our estimate will be skewed.

The potential advantage over the first method (based on the uniform

distribution assumption) is that this method examines a statistical sub-

set, instead of just relying on cardinalities.

3. While the first two methods are simple applications of well-known

statistics methods, the third tries to exploit the nature of the process
that is being applied—essentially, data is being grouped according to
the distinct values within the dimensions. This method therefore esti-
mates the number of tuples in each grouping by estimating the number
of distinct values in each particular grouping.
A suitable probabilistic algorithm is [70]: it counts the number of dis-
tinct values in a multi-set, and makes the estimate after a single pass
through the database, using only a fixed amount of memory. Hence
this algorithm is a good starting point (single pass and fixed amount
of memory are very desirable properties).
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When comparing these three methods, the first method only works well
when the data is approximately uniformly distributed (unsurprisingly), the
sampling-based method is strongly dependent on the number of duplicates,
and the probabilistic method performs very well under various degrees of
skew. Hence the latter provides the most reliable, accurate and predictable
estimate of the three considered algorithms.

6.7.3 The Impact of the Data Structure

While OLAP is the 'container term’, there are actually many variants; in-
cluding ROLAP (relational OLAP) and MOLAP (multidimensional OLAP).
MOLAP stores the data in an optimized multidimensional array, whereas
ROLAP stores the data in a relational database. Both have their advantages
and disadvantages

A noteworthy remark: in [68], they found that it was surprisingly efficient
to take the data set from a table in a relational database, convert this into a
multidimensional array, cube the array and store it back in a database—this
has been found to be more efficient than cubing the table directly!

6.7.4 Conclusion

Clearly, there is much more to the cube operator than meets the eye: a
straightforward implementation is likely unable to attain the desired perfor-
mance; optimizations on multiple levels are necessary. Precomputing parts
seems an obvious optimization, but may require too much storage; estimating
how much storage this will require is also not trivial. The data structures used
should be carefully selected, since the performance impact can be tremen-
dous. And, while complex, attempts to minimize overlapping computations
can also help significantly.

78



6.8 Performance for range-sum queries and updates

For many applications (businesses), batch updates that are executed overnight
are sufficient. However, in many cases, it is a necessity to have more frequent
updates:

e For decision support and stock trading applications, instantaneous up-
dates are crucial.

e OLAP implies interactive data analysis. Interactivity requires fast up-
dates.

e Batch updates may have a low average cost per update, but performing
the complete batch may take a considerable amount of time. For com-
panies that can shut down every night, this might not be a problem,
but for multinational companies, this poses a problem: at all times,
access to the data is required somewhere around the world.

So, the ability to perform more frequent updates would enable other types
of applications. As a side-effect, applications that don’t really need it auto-
matically get greater flexibility and 24 hour availability.

Discussed techniques

In the remainder of this section, three techniques are discussed:

1. Prefix Sum: this is an example of a technique that allows for fast range-
sum queries that unfortunately can have very slow updates. It is very
trivial, anybody with basic math skills could come up with it.

2. Relative Prefix Sum: this method is essentially the same as Prefix Sum,
but stores its data in a smarter manner, to speed up updates.

3. Dynamic Data Cube: the third and last method is slightly inspired by
(Relative) Prefix Sum but has as goal to have sub-linear performance,
both for queries and updates! It is also far more efficient storage-wise:
empty regions simply are not stored at all, whereas they would need
to be created for the Prefix Sum and Relative Prefix Sum methods.

It achieves all this by using a hierarchical (tree) structure, with each
deeper level accessing more granular data.
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Figure 16: The original array (A) on the left and the cumulative array used
for the Prefix Sum method (P) on the right.
(Figure courtesy of [71].)

All are applicable only to range-sum queries, which is a specific type of query,
but a very common one.

Finally, all of the techniques below rely on precomputation and therefore
section 6.7.2 should be kept into account as well.

6.8.1 Prefix Sum

The essential idea of the Prefix Sum method is to precompute many prefix
sums of the data cube, which can then be used to answer any range-sum
query in constant time. The downside is a large update cost—in the worst
case, an array needs to be rebuilt that has the same size as the data cube
itself.

One could describe the prefix array by the following (very simple) formula,
with P the prefix array and A the original array:

Plijl= 3. Akl

0<k<i;0<I<j

Because of the nature of a prefix sum, particular updates have the potential
to cause enormous cascading updates. This becomes instantly obvious when
shown the data that the Prefix Sum method stores. Therefore, an example
has been included: please see figure 16.

For example, when cell A[l,3] would be modified, almost entire P would
need recalculating.

Discussing all details would lead us to far—if interested, it is recommended
to consult the original paper [72]. The worst case update cost is O(n?).
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6.8.2 Relative Prefix Sum

This method provides constant time queries with reduced update complexity
(when compared to the Prefix Sum technique explained in [72] on which
it builds). Therefore this method is more suitable for applications where
constant time queries are a necessity but updates are more frequent than the
Prefix Sum method allows.

The essence of the Relative Prefix Sum approach is to limit the cascading
updates that result in poor update performance. It achieves this by parti-
tioning the array that is to be updated into fixed size regions called overlay
bozes, these are of equal size: k in each dimension. Thus each overlay box
contains k¢ cells, with d the number of dimensions. The explanations below
are for the 2D case, because that is easier to explain and visualize, but the
same techniques can be applied to arrays of any number of dimensions.

The anchor cell is the “upper left” cell of each overlay box.

For each overlay box, there is an overlay array and a relative-prefix array.

Overlay array

The overlay array (OL) stores information on the sums of the “preceding”
regions. By “preceding”, those regions that are more to the left and to the
top in a typical 2D array are meant, that is, the regions on which it depends
for its range sums.
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In the two-dimensional example in figure 17, the cells in the top
row and leftmost column contain the sums of the values in the
corresponding shaded cells: those overlay cells aggregate the cor-
responding shaded cells. The other, empty cells in the overlay
array are not needed and would therefore not be stored in an
actual implementation.

56|78 0 1 2 3|4, 5]|6|7/|8 0 1 2| 3|45 ,6|7/|8

yl

w |9 o u & |w e |~ |
w |9 o u b v e |~ |

Figure 17: Calculation of overlay array values as the sum of the
cells in the shaded cells.
(Figure courtesy of [71].)

More formally, the overlay array OL for the overlay box B, anchored at
(i.e. with its anchor cell at) (by,...,bs) aggregates k? overlay cells O =
(01,...,04...,04), which are those cells that satisfy for each dimension i:
b; < 0; < b; + k, namely all cells in the overlay box B. Of those cells, only
k?— (k —1)¢ are used, namely those in the top row and the leftmost column.
Then each cell in the overlay array is defined as follows:

OLlor,...;00 = (Y. ... Y Alay,...,a4)

a1=l1 ag=lg
V1 Vg
—( Z Z Alay, ..., aq))
al=mi aqg=mgq
with for all dimensions i:
i =b; . i = 0;
if 0, = b;: Y , and if o; > b;: Ui =0
vV = bz V; = 04

The o; = b; case calculates the value for the anchor cell. The o, > b; case
calculates the other cells with values: those in the top row and the leftmost
column.
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Relative-prefix array

The relative-prefix array (RP) stores information on the relative prefix sums
within each overlay box. Fach region in RP contains prefix sums that are
relative to the to the region enclosed by the box, that is, it is independent of
other regions.

More formally, the relative-prefix array RP for the overlay box B, anchored
at (i.e. with its anchor cell at) (by,...,by) , each cell in the relative-prefix
array is defined as follows:

b1tk ba+k
RPliy,... i) = > ... > Alas,..., a4
a1=b1 ag=by

Combining the overlay array and relative-prefix arrays

By combining the information in both components (OL and RP), prefix sums
can be constructed on the fly.

This too, can be made more clear through the use of figures. First look again
at the right-hand side of figure 16. Then look at figure 18, which contains
an example of the OL and RP components for figure 16.

It is clear that each cell in the array on the right-hand side of figure 16 can
be calculated from the OL and RP components by adding the corresponding
values stored in the OL and the RP.
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OL]| O 1 2 3[4 156 7 8 RP| O 1 2 3 5 | 6 7 8
ojojo oo |Oo]O}j17[0 ]| 0O 013 B 9124 8 ]6 9 |12
1 0 12 33 I J10 |18 (210 8 | IR |29 7 [12 |19
210 20 50 2 112 (24 29811 |24 [38]11 |21 |35
3 Q1212|1746 (13|27 §97 |10 |24 3 3 5 615 8 [13] 2 [10]12
4 10 7 17 4 17 |11 |13 8 |14 (23] 9 |18 |23
510 15 40 519 [ 162141421 [38]14 2430
6 1211929 |86 |20 |51 (17920 | 40 6| 4 9 (11 ] 7 g8 [17] 3 6 |10
710 8 14 T16 |[15|19)09 13231121623
810 20 32 8§11 (24 (311017 [29]13[26 |39

Figure 18: The overlay array (OL) on the left and the relative prefix array
(RP) on the right. The overlay boxes are drawn in thick lines for reference.
(Figure courtesy of [71].)

To calculate SUM (A[0,0] : A[8,7]), we must add OL[6,6] (the
anchor cell), OL[8,6] (because our target cell is in column 8
and the anchor cell was in column 6, we need the value in the
overlay array for column 8 as well), OL[6,7] (analogously to the
explanation for OL[8,6]) and RP[8,7] (since that is our target
cell). The result is 179 + 40 + 14 + 23 = 256.

Other examples:

SUM(A[0,0] : A[4,0]) = OL[3,0] + OL[4,0] + RP[4,0]
— 94+04+4=13

SUM(A[0,0] : A[3,5]) = OL[3,3] + OL[3,5] + RP[3, 5]
= 46+15+14=75

SUM(A[0,0] : A[6,3]) = OL[6,3] + RP[6,3]
97 +2 = 99
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Figure 19: Effects of an update to the cell with coordinates (1,5)—marked
with an asterisk on the left.
(Figure courtesy of [71].)

Update performance

The goal of the Relative Prefix Sum method is to reduce the amount of
update cascade. Now that has been demonstrated how this method works, it
is time to look at the update performance. Suppose that A[l, 5] is updated
from the value 3 to the value 5.

Since the OL contains the sums of the “preceding” regions, all values to the
right and those in the first row below need to be updated. In the running
example, these are cells OL[3,5] and OL[6, 5] to the right and cells OL[1, 6],
OL[2,6], OL[3.6] and OL6,6] in the row below. This is demonstrated in
figure 19. And since the RP contains relative prefix sums only for cells
within the same overlay box, only cells RP[1,5] and RP[2,5] need to be
updated (again, see figure 19).

Discussing all details would again lead us to far, for a detailed analysis it
is recommended to read [71], but here it suffices to say that in the worst
case, (7 + Kk — 2)? cells need to be updated (with d the dimensionality, n
the number of possible attribute values and k the length of the overlay box
in each dimension). The worst case update cost has been limited to O(n?),
which is significantly less than for the Prefix Sum method, since the exponent
is only half as large (see section 6.8.1).
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6.8.3 The Dynamic Data Cube

Like the Relative Prefix Sum method, this method also uses overlay boxes.
But it uses multiple levels of overlay boxes, arranged in a hierarchy (more
specifically: a tree structure). Through this particular structure (that will be
explained more in-depth later on), the Dynamic Data Cube method is able to
provide sub-linear performance (O(log®n), with d again the dimensionality)
for both range sum queries and updates on the data cube.

Overlay Boxes

The overlay boxes are similar to the ones used in the Relative Prefix Sum
method, but they differ in the values they store, and in the number of overlay
boxes.

The values that they store can best be explained through the help of a
figure: see figure 20. Each box stores—just like the Relative Prefix Sum
method—k&? — (k — 1)¢ values (i.e. the leaf level stores 1 value, the level
above that stores 4 — 1 = 3 values, etc.); these values provide sums of regions
within the overlay box. E.g., y; contains the sum of all the values of that row.
Also, because sums of regions within the overlay box are stored, g, includes
the value of yy, etc. S is the cell that contains the subtotal for that overlay
box.

Most importantly, each overlay box is independent from the other ones at the
same level in the hierarchy. This is different from the Relative Prefix Sum
method, where each overlay box also contains the values for the “preceding”
regions.

This also explains why the Dynamic Data Cube method uses the bottom row
and rightmost column: it contains the subtotal for each region. Whereas the
Relative Prefix Sum method uses the top row and leftmost column to store
totals for the “preceding” regions in its overlay arrays and then uses the
relative-prefix array to be able to calculate the other cells in that overlay
box.

Construction

As stated before, overlay boxes are organized in a tree structure that recur-
sively partitions the array. This tree structure is the reason that the number
of overlay boxes differs from that of the Relative Prefix Sum method.

The root node of the tree contains the complete range of the array, in overlay
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Figure 20: Partitioning of an array into overlay boxes and calculation of
overlay values..
(Figure courtesy of [71].)

B I = R R O e =

boxes of size k = §. Each overlay box is again divided in half (so now k = %),
and so on. This recursive partitioning continues until the leaf level, where
k = 1 and each overlay box contains a single cell. At that point, the leaf
level contains the values stored in the original array.

For a graphical explanation, see the three different levels, from root to leaf

level, as illustrated in figure 21.

Because the overlay boxes are stored in special structures, sub-linear query
and update times can be guaranteed. For two-dimensional overlays (d =
2), overlay boxes are not stored in arrays, but in a specialized hierarchical
structure with an access and update cost of O(logn); for details on that see
[73]. When the data cubes have a higher dimension (d > 2), the overlay box
values of a d-dimensional data cube can be stored as (d— 1)-dimensional data
cubes in a recursive manner'®>—the recursion of course stops for d = 2.

Queries & Updates

The range sum for any query can be calculated by retrieving only overlay
box values. The query begins at the root node of the tree and includes every
overlay box that is “covered in every dimension” by the coordinates of the
cell whose range sum we're calculating (i.e. if that cell’s index is greater
than or equal to the overlay box’ index in every dimension), i.e. the included
overlay boxes contribute their subtotals to the sum. If the cell intersects the
overlay box, then the box contributes the corresponding overlay value (a row

13The surfaces containing the overlay values of a d-dimensional overlay box are (d — 1)-
dimensional.
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Level 2 (root), k=4 Level 1,k=2 Level 0 (leaves), k=1

11 15 8 3 6 9 315 112 2|4 613
29 33 10181 3 |11 102107 |12 713 216 8 |7 112
40 48 6 5 6 9

15129 35|51 ]16]35|48 |66 5 11103 |11 6 | 14] 6 |19 214 213 313 415
10 15 3|2 115 315 218
24 31 6 4 7 8
42 47 6 |11] 4 [13 4 [ 16)12 |15

12 126 34 |52 8 | 30|54 |61 9 9 10 6 4 |2 113 314 711

Figure 21: Dynamic Data Cube: all levels of the tree.
(Figure courtesy of [71].)

sum value in a 2D data cube, such as y, in figure 20). Then, we go to a
deeper level in the tree until we reach the leaf level.

Since overlay boxes at the same tree level do not intersect, at most one child
will be traversed down. The same algorithm is applied again.

Thanks to this recursive nature, less values need to be retrieved, resulting in
an overall query cost of O(log? n)—for details see again [73].

The same descent down the tree must be made when performing an update
instead of a request, resulting in a worst case update cost that is identical to
the overall query cost. Again, see [73] for details.

Dynamic Growth

Neither the Prefix Sum nor the Relative Prefix Sum methods carry optimiza-
tions to limit growth of the data cube. Instead, they assume that the size
of each dimension is known a priori, or simply that size is not an issue. For
some cases, it is more convenient (and space efficient) to grow the size of the
data cube dynamically, just enough to suit the size of the data. For example,
the number of possible values of an attribute could be large, but the number
of actual different values that are taken is low.

The Prefix Sum and Relative Prefix Sum methods would need to grow new
rows (for lack of a better term in >3D; more accurately: expansion in a
specific dimension) for even a single cell in a previously non-existing area—see
figure 22 for an example. The Dynamic Data Cube, on the other hand, could
just grow into the required direction, affecting just one overlay box at each
tree level.

This makes the Dynamic Data Cube a natural fit for data that contains large
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Figure 22: Growth of a Dynamic Data Cube—shaded areas don’t store val-

ues.

(Figure courtesy of [71].)

non-populated regions: where there is no data, the overlay boxes will simply
not be created. In other words: the Dynamic Data Cube avoids the storage
of empty regions, unlike the Prefix Sum and Relative Prefix Sum methods.
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7 Conclusion

The user begins by integrating Episodes with his web site, which will log the
measured results to an Episodes log file. This log file by itself is a good set of
data that can be interpreted, but it would be too time-intensive to manually
analyze it. Hence the mining of meaningful associations between the context
of a page view and a slow episode needs to be automated.

Episodes log mining (section 3), which is a specialization of web usage
mining, has been studied from a high-level perspective: more detail would
have added many implementation details, and the implementation belongs
in part two of this thesis. Therefore, the necessary details will be added in
part two of this thesis.

Also, because web usage mining is only designed to work with static data
sets (that are updated in batches), regular data mining techniques were not
sufficient for the purpose of this thesis, in which the goal is to detect problems
instantaneously: we need mining of data streams, i.e. data sets to which data
is being appended continuously.

Hence data stream mining (section 4) is the next subject that has been
studied. We've looked at a large set of frequent item mining algorithms and
two frequent itemset mining algorithms, one of which builds upon a frequent
item algorithm and the other of which builds upon a famous frequent itemset
mining algorithm for static data sets, FP-growth.

However, frequent pattern mining algorithms can only find problems that
persist over a certain period over time, that gradually grow and fade. We
also need to be able to detect brief problems, e.g. caused by traffic spikes.
That is, we also want to detect infrequent issues.

For this, we look into anomaly detection (section 5) in general and con-
textual anomaly detection in particular. We've discussed two contextual
anomaly detection algorithms.

Finally, automatically detecting problems and presenting them to the user is
excellent, but the user may also want to inspect all data himself. He may for
example want to look at charts of average page loading time in Belgium and
those in the United States. Or maybe compare this month’s performance
with that of a year ago in Internet Explorer, because optimizations have
been made particularly for that browser. In other words: the user may want
to inspect the data from multiple contexts, with each context limiting one
or more contextual, categorical attributes (e.g. browser, location, operating
system ...) to one or more values.
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That can be achieved with OLAP (section 6), which is designed to be able
to quickly answer queries about multidimensional data. We've explained the
data cube in-depth and discussed several algorithms that help improve its
query performance.

How to continue from this first part of the thesis in the second part next year
is explained in the outlook, which is the next section.
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8 Outlook

This thesis text has only partially been completed: it is only part one. In
part two, there likely will need to be some additional literature study to
cover the missing gaps (see 8.1). However, for the most part it will consist of
implementing what I've always intended to build (see the introduction again,
in section 1); a preliminary toolchain has already been devised (see 8.3). For
all of this, a planning has been created (see 8.4).

8.1 Further Literature Study

e The presented contextual anomaly detection algorithms are in fact pre-
diction algorithms: I've been unable to find actual detection algorithms
so far. Surely, there must be some, and they need to be evaluated.

e The data cube has been covered extensively in this literature study.
However, most of it assumes static data sets (i.e. only updated in
batches at an infrequent pace), while it is likely that also for OLAP,
explicit support and optimizations for data streams will be necessary.
A starting point can be found in [41].

8.2 Implementation

What the implementation will exactly entail has already been indicated in
the introduction (see section 1), in which the goals for this thesis have also
been stated. The details of the implementation will still have to be worked
out in part 2 of this thesis. However, it has not yet been explained how
anything should be implemented, i.e. using which algorithms. That too,
should be done in the second part of this thesis. Of course, it was impossible
to write about the “how” part when the literature study was not yet written,
and it is possible that the “what” part may change due to low feasibility of
some of the desirable features.

In other words: the specification and design of the implementation have not
yet been defined, but will be in the second part of this thesis. They will of
course be based on the results found in the literature study.
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8.3 Preliminary Toolchain

Currently, I plan to not implement this thesis using Google AppEngine as
Steve Souders suggested (see section 1), but to use C++/Qt because it allows
for far more efficient resource usage, is not reliant on a specific cloud com-
puting platform (which is what Google AppEngine is) and because Google
AppEngine might take too much time to get up to speed with. Thus, I will
write a desktop application and not a web application. This implies that
the Episodes log file will somehow have to be sent from the web server to
the desktop application. This can be achieved through a very simple web
application.

This desktop application will in fact contain an embedded web browser which
will contain the actual Ul (i.e. one cannot visit any web sites using it, it’s
merely used for its XHTML/CSS/JS/SVG capabilities). By building the
actual Ul using web technology, this makes the application easier to port to
a web application in the future.

Note that this is preliminary and my view on this may still change.

e Calculations: C++/Qt.

e UL QtWebKit to embed a browser in the C++/Qt application, XHTM-
L/CSS/JS/Raphael for the actual UI (Raphael is a JavaScript library

to create vector graphics in general and charts in specific).

e Episodes log file passthrough web application: PHP.

8.4 Planning

The planning is on a per-month basis, with goals to be completed by the end
of each month:

’ Month \ Goals ‘
September 2010 | further literature study + episodes log mining
October 2010 data stream mining
November 2010 OLAP + initial Ul
December 2010 finish UI 4+ anomaly detection
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9 Glossary

binarization similar to discretization, but instead of transforming into cat-
egorical attributes, transformations into one or more binary attributes
are made
— based on [25], pages 57—63

browser A web browser is an application that runs on end user computers
to view web sites (which live on the World Wide Web). Examples are
Firefox, Internet Explorer, Safari and Opera.

categorical attributes also known as qualitative attributes; attributes with-
out numeric properties: they should be treated like symbols; subclasses
of this type of attribute are nominal and ordinal attributes
— based on [25], pages 25—27

CDN A content delivery network (CDN) is a collection of web servers dis-
tributed across multiple locations to deliver content more efficiently to
users. The server selected for delivering content to a specific user is
typically based on a measure of network proximity.

component A component of a web page, this can be a CSS style sheet, a
JavaScript file, an image, a font, a movie file, et cetera. Synonyms:
resource, web resource.

DBMS a computer program that aids in controlling the creation, usage and
maintenance of a database

discretization some kinds of processing data require categorical attributes;
if these need to be applied on a continuous attribute, this continuous
attribute may need to be transformed into a categorical attribute: this
is called discretization. Additionally, if the resulting categorical at-
tribute has a large number of values (categories), it may be useful to
reduce the number of categories by combining some of them.
This is necessary for e.g. histograms.
— based on [25], pages 57—63

episode An episode in the page loading sequence.
Episodes The Episodes framework [5] (note the capital ’e’).

page loading performance The time it takes to load a web page and all
its components.
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page rendering performance The time the server needs to render a web
page.

PoP A Point of Presence is an access point to the internet where multiple
Internet Service Providers connect with each other.

quantitative attributes also known as numeric attributes; attributes that
can be represented as numbers and have most of the properties of num-
bers; either integer-valued or continuous; subclasses of this type of at-
tribute are interval and ratio attributes
— based on [25], pages 25—27

RDBMS a relational DBMS that is based on the relational model, as in-
troduced by Codd. Examples are MySQL, PostgreSQL, SQL Server,
Oracle ...

web page An (X)HTML document that potentially references components.
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