
Wim Leers
Bachelor thesis proposal
October 18, 2008

Proposal: Improving Drupal’s page loading performance

Introduction

I’ve been an active member of the Drupal1 community for almost 2 years2. Drupal is an open source
Content Management System (of Belgian foil!), but the term Content Management Framework would
be a better fit. It’s a very solid and extensive framework with APIs3 for various kinds of functionality:
Forms API, Menu System, Batch API, Taxonomy, database abstraction layer, theme system, etc. It’s
written in PHP. For cross-browser JavaScript functionality, the jQuery4 library is used.

To indicate the maturity of the Drupal project: it’s being used by an endless list of big names. A short
selection: Amnesty International, MTV UK, United Nations, Harvard Science.
Recently the jQuery team announced that both Nokia and Microsoft were adopting jQuery as part of
their development platforms.
It should be clear by now that Drupal has become one of the big names on the market.

Exactly because of its popularity, Drupal is being used for bigger and more high-traffic web sites than
before. Scalability then becomes a very important factor.
If you know that the largest part – 80 to 90%5 – of the response time (as observed by the end user)
is spent on downloading the components of a web page, then that’s also the part where optimizations
have the largest effect: the page loading performance (not the page rendering performance).
And that’s exactly the area in which Drupal, like virtually every CMS/F, fails completely.

There are many aspects to page loading performance. See the basic analysis that I’ve written for
details6. Most problems are fairly trivial to fix. The most complex part however, is using a CDN. For
static web sites, this is relatively easy to support, but for dynamic web sites, where files are uploaded
(and even altered) all the time, the process of synchronizing files to a CDN, must be automated to be
maintainable.

A CDN is a Content Delivery Network; a network of (static file or streaming media) servers that are
located around the globe. These servers all mirror each others’ files. When a user requests a certain
file from the CDN, the server that is the closest to the user will serve the file.
By using a CDN, your web site will load much faster : the latency will be lower and the throughput will
be greater.

1 http://drupal.org

2 http://drupal.org/user/99777

3 http://api.drupal.org

4 http://jquery.com

5 http://developer.yahoo.com/performance/rules.html#feperf

6 http://wimleers.com/article/improving-drupals-page-loading-performance

http://drupal.org
http://drupal.org
http://drupal.org/user/99777
http://drupal.org/user/99777
http://api.drupal.org
http://api.drupal.org
http://www.jquery.com
http://www.jquery.com
http://developer.yahoo.com/performance/rules.html#
http://developer.yahoo.com/performance/rules.html#
http://wimleers.com/article/improving-drupals-page-loading-performance
http://wimleers.com/article/improving-drupals-page-loading-performance

Problem

The goal I’d like to set: provide easy CDN integration for Drupal web sites. Drupal core will probably
have to be patched, to be able to alter the URLs, to make it possible to serve files from another
domain, but also to make file URLs unique. I will write a Drupal module that synchronizes files to
CDNs, and a daemon that cooperates with this module for big-scale web sites. This daemon could
then also be used by other projects, such as WordPress, Joomla, Plone, Django, and so on.

Now, it would seem obvious that the tools necessary to synchronize files to a CDN are already
available. Unfortunately, that’s not the case. The most important reason is that CDNs have only
become cheaper very recently. Most web developers don’t know about it yet. At least one closed-
source tool exists7, but it’s written specifically for one particular CDN service.
Most CDNs assume that they are going to be used for the distribution of big files, and therefore a
manual upload – typically via (S)FTP – of each file is acceptable. Finally, page loading performance
analysis is a fairly recent development.
The combination of the above factors explains why there are no CDN synchronization tools available
yet.

Most CDNs support file uploads via FTP and SFTP, some support rsync (for details, see “CDNs and
supported upload methods”). Synchronization through rsync could fairly easily be automated, but not
so easily through FTP and SFTP. You would still need to do a fair amount of coding, if you’d want to be
able to specify which files to synchronize. Even if you would write all of the above, it wouldn’t be
scalable, because you’d have to recursively scan each directory for new and changed files.
The daemon I propose to write would take advantage of the present filesystem event monitor (inotify
on Linux, FSEvents on Mac OS X, WMI on Windows).

Important: I don’t have to start from scratch!

I want to make it crystal clear from the beginning that I’m exploring something I’m already fairly familiar
with, as I’ve already said in my initial e-mail.

I’ve already written a basic analysis and written a module that implements the essence of the required
functionality8. Ironically, this module has serious design issues, which prevents it from being scalable. I
will rewrite this module from scratch, with a lot of additional functionality.

Research & implementation details

Wherever feasible, unit & functional tests should be written, both for PHP and C++/Qt code.

Items marked with an asterisk (*) have already been implemented before, so I can look at my old
code for inspiration when writing the new implementation.

Complex problems are marked with (§).

7 http://www.us.cdnetworks.com/technology/content_Synchronization.php

8 http://drupal.org/project/cdn

http://www.us.cdnetworks.com/technology/content_Synchronization.php
http://www.us.cdnetworks.com/technology/content_Synchronization.php
http://drupal.org/project/cdn
http://drupal.org/project/cdn

1. CDN integration

1. Synchronization

1. Small scale (PHP/shell scripts)

1. FTP *

2. (extra) SFTP

3. (extra) Amazon S3

2. Big scale (cross-platform daemon written in C++/Qt)

For maximum scalability, you don’t want PHP or shell scripts to be running during cron
every x minutes, scanning directories for newly added or changed files and then
synchronizing them to a CDN (*).
That’s why you want an actual daemon (§) to handle that: this daemon would run at all
times instead of at specified intervals (cron), could take advantage of the filesystem event
monitor (inotify9 on Linux, FSEvents10 on Mac OS X, WMI11 on Windows) to detect new/
changed files and can open parallel network connections for synchronizing (which will
result in huge synchronization speedups).

1. Linux support (inotify)

2. FTP

3. SFTP

4. rsync

5. (extra) Amazon S3

6. (extra) Mac OS X support (FSEvents)

7. (extra) Windows support (WMI)

2. Tracking (of synchronized files)

At all times, we must maintain a list of synchronized files; 1) to know which files still have to be
synchronized, 2) to know the unique URL of a file. Typically, most files must have unique URLs;
only files that are not cached on the client side don’t need this (like streaming video).
You could argue that you really only need a blacklist (track files that aren’t synchronized yet),
but that wouldn’t work! You would have to regenerate the unique file URL each time, which is
vastly slower than keeping them stored somewhere (i.e. a whitelist).
So, how do we maintain a list of files that could grow up to (and beyond) 100,000 files (§)?
And how do we actually use this effectively, i.e. without slowing down the page rendering time

9 http://en.wikipedia.org/wiki/Inotify

10 http://en.wikipedia.org/wiki/FSEvents

11 Windows Management Instrumentation, http://en.wikipedia.org/wiki/Windows_Management_Instrumentation

http://en.wikipedia.org/wiki/Inotify
http://en.wikipedia.org/wiki/Inotify
http://en.wikipedia.org/wiki/FSEvents
http://en.wikipedia.org/wiki/FSEvents
http://en.wikipedia.org/wiki/Windows_Management_Instrumentation
http://en.wikipedia.org/wiki/Windows_Management_Instrumentation

(§)? This is one of the most important aspects on which I still have to do research.
(Possibilities: MySQL, file-based, SQLite, Memcached.)

3. Issues

1. You must be able to use multiple CDNs, and route different groups of files to different
CDNs.

2. All “standard” URLs must be altered, so that clients will request files from the CDN instead
of the web server. In 99% of the cases (e.g. CSS, JS files), it’s necessary that the URLs are
unique, so you can set a far future Expires header (e.g. +10 years) (*).

3. Even URLs in CSS/JS files must be altered! The reason: because the URLs must be unique,
you can no longer depend on the relative paths used in CSS/JS files (*).

4. Page caching is problematic: ensure that URLs referenced in cached pages persist. This
means that we must keep files on the CDN for at least as long as pages can be cached.

5. CDN propagation is a problem, too. Because a CDN typically is a globally distributed
network of servers, you have to ensure that the file has been propagated to all servers,
before you can start using (linking) to it.

4. Optimizations

1. Since proper usage of a CDN demands unique filenames for each version of a file, we can
simplify the necessary tests. All we need to check, is if the file 1) exists and 2) has the
correct size.

2. Automatically minify CSS and JS files that are being synchronized, by using the YUI
compressor.12 Will only be available when running the daemon.

3. (extra) Ignore files of disabled modules and themes.

5. Basic analysis tools

1. Status report (time, duration, etc. of last synchronization)

2. Statistics (ratio synchronized files, file size, # of files synced per day, etc.)

3. As soon as the average duration required to synchronize the files to the CDN when using
the small scale features reaches a certain threshold, the site owner should automatically be
warned that he should upgrade.

4. (extra) Which files should be served from a CDN, but aren’t? I.e. which pages have most unsynchronized
files (§)?

2. (extra) JS should be loaded as late as possible (before the closing body tag), but not JS that affects the styling of the
page, because this results in annoyingly late style updates (“flicker” after the page seems to have finished loading).
Therefore, “critical” JS should be loaded in the head tag. Clear guidelines for this should be written.

12 http://developer.yahoo.com/yui/compressor

http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/

3. (extra) An Expiration API. This would allow the different entities in Drupal (Taxonomy vocabularies, Menus, Nodes,
etc.) to keep track of when it was last updated, i.e. when the cache should be invalidated. It should also support
hierarchies, because you wouldn’t want an entire cached tree to be marked as invalidated, but only the relevant
subtree (§).
One could then make all JSON/AJAX replies of the server set the Last-Modified header, which would greatly improve
the responsiveness of pages that include AJAX functionality. It would even allow for more aggressive and effective
caching techniques.

CDNs and supported upload methods

CDN FTP SFTP rsync other

Akamai Y N Y SCP

BitGravity Y N Y WebDAV

CacheFly Y Y Y

CDNetworks N N N custom

Edgecast Y N Y web interface

Level3 Y Y Y SOAP/REST, API

Limelight Y Y N WebDAV, Aspera

SimpleCDN Y Y N automatic
offloading, web

interface

